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Abstract
Quantum Tests of the Universality of Free Fall
In the process of formulating a “theory of everything” that aims to provide a self-contained model
of modern physics by unifying all four fundamental interactions, two theoretical frameworks have
yielded important contributions: quantum mechanics, which can explain the nature of physics at
the most microscopic length scales such as the origin of spectra of electrons bound in atomic
systems, and Einstein’s general relativity, that conveys our understanding of gravity over the
largest distances across the universe. Although no theory of “quantum gravity”, that is consistent
over all energy scales, exists to date, certain modifications may enable a reconciliation of quantum
mechanics and general relativity. These approaches allow for violations of the universality of free
fall (UFF), that among Lorentz invariance and local position invariance constitute Einstein’s
equivalence principle. The UFF states that all bodies, located at the same space-time point,
experience the same acceleration in a gravitational field independently of their composition.
Because of its central role in modern physics the UFF has been tested extensively in many
experiments, most of which utilized classical test masses. Quantum mechanical tests of the UFF
differ from classical ones in various aspects such as the coherence length and spin polarization of
the test masses.

In this thesis, the first inertial-sensitive matter wave interferometer comparing the free fall of
two different elements, 87Rb and 39K, was realized. This quantum test of the UFF yielded an
Eötvös ratio 𝜂Rb,K = (0.3 ± 5.4) × 10−7, and was limited by statistical uncertainty. In this work,
an existing apparatus for rubidium interferometry was extended to the use of potassium and the
first inertial-sensitive potassium matter wave interferometer with a resolution to gravitational
acceleration of 𝜎K = 3 × 10−6 m/s2 after 4096 s integration has been demonstrated. A description
of the experiment including the technical realization and the techniques used is provided.
Specifically, the challenges imposed by the use of potassium, which in comparison to rubidium
has a smaller mass and lower hyperfine energy splitting, are examined. The thesis furthermore
discusses an assessment of the systematic effects influencing the dual species measurement and
presents future strategies to further improve the performance of the apparatus. As a preliminary
result, it was possible to improve the potassium short-term sensitivity to gravitational acceleration
to 𝜎K = 2.1 × 10−5 m/s2/

√
Hz. The results of this thesis pave the way for exciting future

experiments to be performed in large-scale apparatuses and in space.
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Zusammenfassung
Quantentests der Universalität des freien Falls
Zur Formulierung einer „Weltformel“, deren Ziel eine in sich abgeschlossene Vereinigung aller
vier fundamentalen Wechselwirkungen ist, haben zwei Theorien große Beiträge geleistet: die
Quantenmechanik, welche die Grundlagen der Physik auf kleinsten Längenskalen, wie zum
Beispiel die Ursprünge der Spektren von Elektronen in atomaren Systemen, erklärt, und Ein-
steins allgemeine Relativitätstheorie, die unser Verständnis der Gravitation auf den größten
Längenskalen im Universum liefert. Gewisse Modifikationen der allgemeinen Relativitätstheorie
erlauben ihre Vereinigung mit der Quantenmechanik, allerdings konnte bisher noch keine über
alle Energieskalen gültige Theorie der „Quantengravitation“ formuliert werden. Einige dieser
Modifikationen erlauben beispielsweise Verletzungen der Universalität des freien Falls (UFF),
welche neben der Lorentz-Invarianz und der lokalen Positions-Invarianz die Grundlage des
Einsteinschen Äquivalenzprinzips bildet. Die UFF besagt, dass alle Körper, die sich am selben
Raumzeitpunkt befinden, unabhängig von ihrer Zusammensetzung identische Beschleunigungen in
einem Gravitationsfeld erfahren. Wegen ihrer zentralen Rolle in der modernen Physik wurde die
UFF in zahlreichen Experimenten mit vorwiegend klassischen Testmassen umfangreich getestet.
Quantenmechanische Tests der UFF unterscheiden sich von ihren klassischen Gegenstücken in
vielerlei Hinsicht, wie zum Beispiel in der Kohärenzlänge und der Spinpolarisation der Testmassen.

Im Rahmen dieser Arbeit wurde das erste beschleunigungsempfindliche Materiewelleninterfer-
ometer basierend auf 39K und 87Rb für einen Vergleich der Freifallbeschleunigungen realisiert.
Dieser Quantentest der UFF führte zu einer durch statistische Unsicherheit limitierten Bestim-
mung des Eötvös-Verhältnisses 𝜂Rb,K = (0.3 ± 5.4) × 10−7. Hierzu wurde ein existierendes
Rubidium-Materiewelleninterferometer für den Betrieb mit Kalium erweitert. Es konnten hi-
erbei mit einer Auflösung von 𝜎K = 3 × 10−6 m/s2 nach 4096 s Integrationszeit die ersten
beschleunigungsempfindlichen Messungen mit Kalium demonstriert werden. Die spezifischen
Herausforderungen in Verbindung mit dem Element Kalium, welches eine geringere Masse und
eine kleinere Hyperfeinaufspaltung als Rubidium besitzt, werden bei der Beschreibung des exper-
imentellen Aufbaus und der Methoden behandelt. Weiterhin werden in dieser Arbeit die für den
Test der UFF relevanten systematischen Effekte analysiert und Strategien zur Verbesserung der
bisher erreichten Ergebnisse zu verbessern. Im Rahmen erster Verbesserungen war es möglich,
eine Kurzzeitsensitivität des Kaliuminterferometers von 𝜎K = 2.1 × 10−5 m/s2/

√
Hz zu erreichen.

Die Ergebnisse dieser Arbeit ebnen den Weg für zukünftige Experimente in Apparaturen mit
großer Basislinie und im Weltraum.

Schlagwörter: Materiewelleninterferometrie, Universalität des freien Falls, Präzisionsmessungen
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CHAPTER 1
Introduction

“Auch in den Lehrbüchern wird es gewöhnlich als etwas Naheliegendes und nicht
besonders Hervorzuhebendes hingestellt, dass die Schwere, das Gewicht eines Körpers,
seiner Masse proportional ist, unabhängig von dem Stoffe aus welchem er besteht.
Und doch haben wir hier in Wahrheit zwei Eigenschaften, zwei Haupteigenschaften
der Materie vor uns, die völlig unabhängig voneinander gedacht werden können und
die sich durch die Erfahrung und nur durch diese als völlig gleich erweisen. Diese
Übereinstimmung ist also vielmehr als ein wunderbares Rätsel zu bezeichnen, sie bedarf
einer Erklärung.”

— H. Hertz, 1884 [1]

A Theory of Everything
At the beginning of the 20th century, two central theories were developed that form the foundation
of modern physics as we know it today. On the one hand, the brilliant findings of physicists
including Einstein, de Broglie, Heisenberg, Schrödinger, Born, Pauli, and many others
lead to the development of quantum mechanics [2–9]. Previously unanswered questions, that could
be as simple as “Why is water transparent?” were finally resolved by understanding absorption
and emission spectra with the aid of this framework. As an example, over the following decades
continuing work led to a full description of the hydrogen atom and its spectrum. As it is the
simplest atomic system, precision spectroscopy of its transitions [10, 11] has ever since evolved
into one of the most fruitful testbeds of quantum mechanics as well as theories based on its
foundation. On the other hand, in 1916 Einstein established the theory of general relativity [12];
a metric theory of gravity. Although the gravitational attraction of two protons of masses 𝑚𝑝

with distance 𝑟 compared to the Coulomb repulsion of their charges 𝑒 [13]

𝐹grav
𝐹elec

=
𝐺𝑚2

𝑝/𝑟
2

𝑒2/(4𝜋 𝜀0 𝑟2) =
𝐺𝑚2

𝑝

𝑒2/(4𝜋 𝜀0) ≈ 10−36 (1.1)

with 𝐺 being the gravitational constant and 𝜀0 the dielectric constant, is by far weaker, the
importance of gravity on a cosmological scale becomes obvious when considering that the universe
is electrically neutral1 and at the same time there is no anticharge to screen mass. Applying
Einstein’s theory of general relativity made it possible to understand the geometry of spacetime

1 Due to the strong and long-ranging Coulomb interaction, macroscopic charges quickly neutralize each other.

1



2 1 Introduction

that explains the physics of cosmology, as well as the majority of astronomical observations in
our solar system and beyond, such as binary systems and black holes [14]. Further, gravitational
phenomena, such as the gravitational redshift, could be explained. Equally important, a variety
of predictions were inferred with one of the most popular ones being gravitational waves [15]
whose direct observation1 is still an ongoing quest [17–19].
To create a universal “theory of everything” [20] that combines all four fundamental interactions2,
it is necessary to assure compatibility of the underlying theories. As of today, both, quantum
mechanics and general relativity, have been confirmed in a large number of experiments probing
the validity of these theories at outstanding precision3. If both theories are valid, they have to
hold for all phenomena as a direct consequence. Unfortunately, no attempt to express a unified
theory of “quantum gravity”, that is consistent over all energy scales, has succeeded thus far [28].
In addition to the current incompatibility of general relativity and quantum mechanics, the
nature of dark matter and dark energy [28] remain to be explained4. These circumstances lead to
the necessity of extensions of at least one of the theories to enable a unified theory of “quantum
gravity” on all energy scales.

Tests of Einstein’s Equivalence Principle
The foundation of general relativity is constituted by Einstein’s equivalence principle (EEP)
that itself contains three postulates [14, 28, 30]:

1. Local Position Invariance
All comoving clocks relying on non-gravitational physics measure identical proper times5

when propagating along the same world lines in a gravitational field, implying a universality
of the gravitational redshift.

2. Local Lorentz Invariance
The speed of light is constant, and no local non-gravitational experiment can distinguish a
local reference frame from another one.

3. Universality of Free Fall
In the absence of other forces, all bodies, located at the same space-time point, experience the
same acceleration in a gravitational field independently of their composition when neglecting
self-gravity.

Einstein’s equivalence principle has been confirmed in many experimental tests. Starting with the
original experiments performed by Pound and Rebka [24], the universality of the gravitational
redshift has been further investigated by clock comparisons both on ground and with one clock
in space [25–27, 31–33]. Also the local Lorentz invariance has been confirmed in numerous
tests and analyses [34–36]. The universality of free fall (UFF), which is subject of this thesis,
originates from the equality of inertial mass 𝑚in and gravitational mass 𝑚gr. The consequence
that gravity, unlike any other fundamental interaction, acts on all bodies in the same manner

1 Indirect proof for the existence of gravitational waves is deduced from the increase of the rotation frequency of
binaries [16].

2 Commonly, a “theory of everything” is referred to as a unification of the “grand unified theory” and gravitation.
3 Examples of seminal experiments testing quantum mechanics are given in Refs. [21–23]; examples of seminal

tests of general relativity are published in Refs. [16, 24–27].
4 The Pioneer anomaly that is mentioned as a third question in Ref. [28] has recently been resolved [29].
5 The proper time is the motion-dependent time measured by a clock propagating on a world line between two

events.



3

regardless of their gravitational charge has been described as a “wonderful mystery” in 1884 by
Hertz [1] and has come under scrutiny in numerous experiments ever since. Tests aiming to
validate the UFF for test bodies 𝐴 and 𝐵 perform a null measurement of the Eötvös ratio

𝜂A,B ≡ 2 𝑔A − 𝑔B
𝑔A + 𝑔B

= 2

(︁
𝑚gr
𝑚in

)︁
A

−
(︁

𝑚gr
𝑚in

)︁
B(︁

𝑚gr
𝑚in

)︁
A

+
(︁

𝑚gr
𝑚in

)︁
B

, (1.2)

where 𝑔X is the gravitational acceleration of test body X. The Eötvös ratio hence expresses
the differential gravitational acceleration of two test masses divided by their mean acceleration.
Equivalently, Equation (1.2) can be related to the difference of ratios of gravitational and inertial
mass. A UFF violation yields 𝜂A,B ̸= 0 that can result from a difference of the gravitational
and inertial mass 𝑚gr/𝑚in ̸= 1, or a fifth force coupling differently to the test bodies, or more
specifically, to their constituent particles such as neutrons and protons.
Historically, tests of the UFF emerged from Galilei’s thought experiment1 in the 16th cen-
tury of comparing the free fall of different cannon balls dropped from the leaning tower of
Pisa. This kind of free fall tests is thus commonly referred to as Galilean tests. Similarly, a
demonstration experiment was performed by dropping a hammer and a feather on the Moon
during the Apollo 15 mission in 1971. The best tests of the UFF to date were performed in
complementary ways: Monitoring the distance between Earth and Moon in free fall around the
Sun by means of laser ranging, it was possible to constrain the normalized differential acceleration
to 𝜂Earth,Moon = (−0.8±1.3)×10−13 [37, 38]; employing a torsion balance [39, 40] with beryllium
and titanium test masses, experiments performed by the group of Adelberger constrained
𝜂Be,Ti = (0.3 ± 1.8) × 10−13 [41]. The best Galilean test has been performed using a laser
interferometer to read out the free fall of two test masses built of copper and uranium and found
𝜂Cu,U = (1.3 ± 5.0) × 10−10 [42]. Furthermore, numerous initiatives are currently developing new
projects that are based on astronomical observations [43, 44] and Galilean tests in space [45]
aiming to further improve the bounds on UFF violations. All of the aforementioned tests
have in common that they employ classical, macroscopic bodies as test masses. In addition

Table 1.1: Overview of performed matter wave tests of the UFF.

Experiment Ref. A B 𝜂A,B

Palo Alto [46] a 133Cs SiO2 (7.0 ± 7.0) × 10−9

Paris [47] a 87Rb SiO2 (4.4 ± 6.5) × 10−9

München [48] 85Rb 87Rb (1.2 ± 1.7) × 10−7

Palaiseau [49] 85Rb 87Rb (1.2 ± 3.2) × 10−7

Firenze [50] 87Sr 88Sr (0.2 ± 1.6) × 10−7

Hannover [51] b 39K 87Rb (0.3 ± 5.4) × 10−7

a This semi-classical experiment compared the free fall of cold atoms to that of a falling corner cube.
b The experiment is presented in this thesis.

1 The experiments Galilei actually performed were regarding investigations of “falling” bodies on an inclined
plane.



4 1 Introduction

to classical tests, the UFF can also be tested with quantum objects as first demonstrated by
Colella, Overhauser, and Werner in 1975 [52]. In these experiments, which are based on
the interference of massive particles such as neutrons or atoms, the gravitationally induced phase
shift imprinted on a particle’s wave function is either compared to a classical gravimeter [46, 47],
or to that of a second quantum object. A variety of tests based on matter wave interferometry
have been performed comparing different rubidium [48, 49, 53] and strontium [50] isotopes,
and have recently been extended to tests of two different chemical elements, rubidium and
potassium [51], as presented in this thesis (Table 1.1). In order to increase the gravitationally
induced phase shift, there are experiments proposed in large-scale fountains on ground [54–56]
and for microgravity [57–60] aiming to increase the free fall time and thus the sensitivity to
accelerations.
Quantum mechanical tests of the UFF differ from classical ones in various aspects, thus qualita-
tively different results are expected:

1. Set of test masses
Torsion balance experiments are typically restricted to the use of conducting, non-magnetic
solids as test masses [61]. As discussed below, depending on the underlying theory, the
choice of test masses directly influences the sensitivity to a UFF violation. By providing
a number of species that can be laser-cooled [62, 63], matter wave tests extend the set
of test masses for UFF experiments with highest isotopic purity, thus provide new linear
combinations when searching for violation of the UFF [64, 65].

2. Spin-gravity coupling
Ensembles employed in matter wave tests are naturally spin-polarized and thus allow to
investigate effects of spin-gravity coupling [28, 48, 50, 66–68]. When utilizing macroscopic
test masses, spin-polarization is only possible in rare cases [69].

3. Test mass coherence length
The coherence length of quantum objects specifically is different to the one of macroscopic
masses by orders of magnitude. This allows to investigate UFF-violating modifications of
quantum mechanics, for example as a cause of space-time fluctuations [70].

4. Test duality
Atomic ensembles can be employed as UFF test masses as well as atomic clocks [71]. Thus,
a single system is able to test both the UFF and the universality of the gravitational
redshift1.

Frameworks that are able to quantify violations of Einstein’s equivalence principle2 are for
example given by the dilaton scenario [74], and the standard model extension [64, 75–80],
which parametrizes violations of Lorentz invariance and related violations of the EEP. In
the framework of the standard model extension, a simplified approach allows to express EEP
violations of neutral matter in terms of five parameters which are all zero if the EEP holds. One
of the five describes electronic EEP violation [64] and is well constrained by local Lorentz
invariance [34–36] and redshift experiments [24–27, 31–33]. Two of the remaining four parameters
express EEP violations due to neutron excess of the test nuclei and their total baryon number.

1 It should be pointed out, however, that the technical requirements of atomic clocks and matter wave interfer-
ometers are quite different.

2 In specific, such a theory allows to compare EEP tests with respect to their sensitivity to a violation and their
test mass choices.
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Figure 1.1: Comparison of test masses X with respect to SiO2 analyzed in the standard-model
extension. The sensitivity factors 𝑓𝛽𝑒+𝑝−𝑛

X
(neutron excess) and 𝑓𝛽𝑒+𝑝+𝑛

X
(baryon number) for species

X are calculated according to Ref. [64]. Relevant nuclide data is taken from Ref. [72]. A larger
separation of two species corresponds to a larger anomalous acceleration and thus higher sensitivity
to violations of the EEP. For Ti and Cu natural occurrence of isotopes [73] is assumed.

The last two are a measure for the impact of EEP tests using bound systems of normal matter on
the antimatter sector [64]. As an example of an application of the standard model extension, the
sensitivity factors for the normal matter violation parameters 𝛽𝑒+𝑝−𝑛

X (neutron excess parameter)
and 𝛽𝑒+𝑝+𝑛

x (baryon number parameter) are calculated for long-lived nuclides according to
Ref. [64] in Figure 1.1. Here, a large separation of two test masses corresponds to a large
anomalous acceleration and thus higher sensitivity to violations of the EEP. Different test mass
pairs probe different linear combinations of EEP violations of their constituent particles neutrons,
protons, and electrons. An EEP test with a new test mass pair that is significantly different
from existing tests, such as rubidium and potassium in this thesis, has a great potential in
influencing the results on the global bounds of EEP violations. This holds even for the case that
the measurement accuracy does not exceed the one of the best existing tests [65].

Scope of this thesis
A violation of the universality of free fall remains the most likely candidate to unveil a micro-
scopic theory enabling a unification of quantum mechanics and general relativity. Matter wave
interferometers provide a novel and complementary method to test the universality of free fall
due to their unique features and an extended set of test masses. Specifically, the test mass
combination of rubidium and potassium provides an interesting complementarity to the existing
torsion balance experiments with respect to the violation parameters in the standard model
extension. While rubidium matter wave interferometers are operated by many groups all over
the world, no potassium interferometer has been realized prior to the work of this thesis.
This thesis is organized as follows. An introduction into the theoretical formalism describing mat-
ter wave interferometry based on stimulated Raman transitions, and the analysis and comparison
of test mass pairs is given in Chapter 2. The experimental setup is described in Chapter 3.
In Chapter 4 an overview over the techniques necessary to perform matter wave interferometry
with potassium is provided and the obtained potassium single species performance are presented.
Chapter 5 analyzes the performed quantum test of the universality of free fall using rubidium
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and potassium and its underlying systematic effects in detail. This thesis is closed with an
outlook concerning possible improvements of the presented apparatus and a look into the future
of matter wave tests of the universality of free fall in Chapter 6.



CHAPTER 2
Theoretical description of methods

“Unstreitig wäre es ein Fehler, aus den chemischen Bestandteilen des Weizenkorns die
Gestalt der Ähre erforschen zu wollen, die es treibt, da man nur aufs Feld zu gehen
braucht, um die Ähren fertig zu sehen. Untersuchung und Beobachtung, Philosophie
und Erfahrung dürfen nie einander verachten noch ausschließen; sie leisten einander
gegenseitige Bürgschaft.”

— C. von Clausewitz, ∼1830 [81]

In this Chapter, a description of the underlying theory relevant for this thesis is provided. In
Section 2.1, an overview on the theoretical description of matter wave interferometry is elaborated.
In Section 2.2 this Chapter closes with a description of two frameworks, which are capable of
comparing the choice of test masses in an experiment testing the universality of free fall.

2.1 Brief theoretical description of matter wave interferometry
This Section briefly reviews the central formalism needed to theoretically describe matter wave
interferometer. A detailed derivation can for example be found in Ref. [82]. Based on the time
evolution of a two-state system induced by the interaction with an electromagnetic field, the beam
splitting process is explained in Section 2.1.1. Afterwards, the inertial-sensitive Mach-Zehnder
geometry [83] and its leading order phase shift are described in Section 2.1.2, and the sensitivity
formalism, which allows to translate perturbations of the two-state system into interferometer
phase contributions, is introduced in Section 2.1.3.

2.1.1 Beam splitting process
Beam splitters for matter waves can for example be realized by utilizing mechanical gratings,

or electromagnetic waves [84, 85]. While the coherent electromagnetic coupling can be realized
using single photon electric or magnetic dipole transitions, the following assessment is treating
stimulated two-photon Raman transitions1, in which the absorption of a photon of field 𝜔1 is
followed by stimulated emission into the field 𝜔2 as indicated in Figure 2.1. The time evolution
of the internal degrees of freedom of a two-state system |𝑔⟩ and |𝑒⟩ with energies ~𝜔𝑔 and ~𝜔𝑒,
separated by 𝜔12 ≡ 𝜔𝑒 − 𝜔𝑔 and amplitudes 𝑐𝑒 (𝑡) and 𝑐𝑔 (𝑡),

|𝜓 (𝑡)⟩ = 𝑐𝑒 (𝑡) |𝑒⟩ + 𝑐𝑔 (𝑡) |𝑔⟩ , (2.1)

1 The formalism is very similar when using a different beam splitting method, e.g. Bragg diffraction [86, 87].

7
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|i⟩

|e⟩

|g⟩

𝐸 = ~ 2𝜋 𝑐
𝜆

𝛥

𝜔1

𝜔2

𝛿

𝜔12

Fig. 2.1: Coherent two-photon transition
coupling the states |𝑔⟩ and |𝑒⟩ with ener-
gies ~𝜔𝑔 and ~𝜔𝑒 at a detuning 𝛥 to the
intermediate state |𝑖⟩. The laser frequen-
cies are 𝜔1 and 𝜔2, and their detuning from
resonance 𝛿 = 𝜔1 − 𝜔2 − 𝜔12. The transi-
tion wavelength to the intermediate state
is ≈ 𝜆.

when coherently coupled by an electromagnetic field 𝐸⃗
with a corresponding Hamiltonian

𝐻̂ = ~𝜔𝑒 |𝑒⟩⟨𝑒| + ~𝜔𝑔 |𝑔⟩⟨𝑔| − 𝑑 · 𝐸⃗ , (2.2)

where 𝑑 is the dipole operator, and spontaneous emission
is neglected, can be derived by solving the Schrödinger
equation [82]. The result is the Rabi formula1 [82]

𝑃𝑒 (𝑡) = |𝑐𝑒 (𝑡)|2 =
[︂
𝛺0
𝛺eff

sin
(︂
𝛺eff 𝑡

2

)︂]︂2
, (2.3)

giving the time dependent population probability of state
|𝑒⟩. Here, the effective Rabi frequency 𝛺eff is depending
on the resonant Rabi frequency

𝛺0 = 𝛺1𝛺
*
2

2𝛥 , (2.4)

in which 𝛥 is the Raman laser detuning, and the related
single light field Rabi frequencies

𝛺𝑗 = 𝛤

√︂
𝐼𝑗

𝐼sat
, (2.5)

with the light field intensities 𝐼𝑗 , the natural linewidth 𝛤 ,
and the saturation intensity 𝐼sat [82, 88]. The effective
Rabi frequency is [82]

𝛺eff =
√︁
𝛺2

0 + 𝛿2 . (2.6)

Here, 𝛿 = 𝜔1 − 𝜔2 − 𝜔12 accounts for any detuning with respect to the two-photon resonance, e.g.
due to light shifts or the Doppler shift.
Figure 2.2 shows the time evolution of the Rabi oscillations with the system initially prepared

in state |𝑔⟩ at time 𝑡 = 0. A Raman pulse coupling the two-state system for a duration of
𝑡 = 𝜋/(2𝛺eff) ≡ 𝜏𝜋/2 creates a coherent superposition

|𝜓 (𝜏𝜋/2)⟩ = 1√
2

(|𝑒⟩ + |𝑔⟩) , (2.7)

and is called a “𝜋/2-pulse”. Accordingly, a pulse fulfilling 𝑡 = 𝜋/(𝛺eff) ≡ 𝜏𝜋 is called “𝜋-pulse”,
and transfers the system into the state |𝑒⟩.
The assessment above exclusively treats the system’s internal degree of freedom. However, due
to the photon momentum 𝑝 = ~ 𝑘 that is exchanged during the absorption and emission process,
the external degree of freedom of the system has to be analyzed as well. A light field at frequency

1 In Equation (2.3), the system is in state |𝑔⟩ at time 𝑡 = 0 without loss of generality. Furthermore, a large
detuning |𝛥| ≫ 𝛤 is assumed allowing to neglect single photon transitions and related decoherence processes.
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Figure 2.2: Ideal Rabi oscillations 𝑃𝑒 (𝑡) with the system initially prepared in state |𝑔⟩, plotted
for a resonantly driven system (solid black line) and a small detuning 𝛿 (red dashed line). For the
resonant case, the conditions 𝑡 = 𝜋/(2𝛺eff) ≡ 𝜏𝜋/2 (“𝜋/2-pulse”) and 𝑡 = 𝜋/(𝛺eff) ≡ 𝜏𝜋 (“𝜋-pulse”)
are marked.

𝜔𝑗 can be assigned the wave vector

𝑘𝑗 = 𝜔𝑗

𝑐
, (2.8)

where 𝑐 is the speed of light. Accordingly, the effective wave vector

𝑘eff ≡ 𝑘1 − 𝑘2 , (2.9)

for the two-photon transition in Figure 2.1. While for copropagating fields 𝜔1 and 𝜔2, 𝑘eff ≈ 0,
counterpropagating light fields [83] (see Section 4.3) yield the effective wave vector

𝑘eff = 𝜔1 + 𝜔2
𝑐

≈ 4𝜋
𝜆
, (2.10)

in which 𝜆 is the transition wavelength, and the transferred two-photon momentum equals

𝑝 = ~ 𝑘eff . (2.11)

The related recoil velocity [88]

𝑣rec = ~ 𝑘eff
𝑚

, (2.12)

and the recoil frequency [88]

𝜔rec = ~ 𝑘2
eff

2𝑚 , (2.13)

which corresponds to the Doppler shift induced by the momentum change.
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The two-photon light field couples the states |𝑔, 𝑝⟩ → |𝑒, 𝑝+ ~ 𝑘eff⟩ in a system initially prepared in
state |𝑔, 𝑝⟩ with momentum 𝑝. In the following Section, it will be shown how this interaction can
be used as “beam splitters” and “mirrors” for matter waves, which allow to realize interferometer
geometries.

2.1.2 Mach-Zehnder geometry

𝑡

𝑧

𝑔

|𝑔, 𝑝⟩
|𝑒, 𝑝 ± ~ 𝑘eff⟩

𝑘
eff

𝑘
eff

0 𝑇 2 𝑇

𝜋/2 𝜋 𝜋/2

Fig. 2.3: Space-time diagram of a Mach-
Zehnder matter wave interferometer in a con-
stant gravitational field for the downward (thick
lines) and upward (thin lines) direction of mo-
mentum transfer. Stimulated Raman transi-
tions at times 0, 𝑇 , and 2𝑇 couple the states
|𝑔, 𝑝⟩ and |𝑒, 𝑝± ~ 𝑘eff⟩. The velocity change in-
duced by the Raman pulses is not to scale with
respect to the gravitational acceleration.

The “separated oscillating fields” method [89],
which was introduced by Ramsey, allowed to sig-
nificantly increase the resolution of transition fre-
quency measurements. This was made possible by
extending a single Fourier transform-limited elec-
tromagnetic pulse interrogation with a second pulse
applied after an evolution time, and thus effectively
creating a 𝜋/2-𝜋/2-interferometer, which allowed to
identify the transition frequency in an interference
fringe pattern at a much higher resolution than the
Fourier-broadened line did.
Measuring gravitational acceleration with matter
waves can be understood as an interferometric spec-
troscopy of the gravitationally induced Doppler
shift of a matter wave with respect to the beam
splitting field. In general, the Doppler shift 𝜔𝐷

experienced by a particle with velocity 𝑣 in a field
with wave vector 𝑘 is

𝜔𝐷 = 𝑘 · 𝑣 . (2.14)

In a constant gravitational field, a particle’s velocity
𝑣 = 𝑔 · 𝑡+ 𝑣0. Without loss of generality, the initial
velocity can be set 𝑣0 = 0. In a two-photon light
field with wave vector 𝑘eff, the Doppler shift

𝜔𝐷(𝑡) = 𝑘eff · 𝑔 · 𝑡, (2.15)

⇔ 𝛼𝐷 ≡ 𝜔𝐷(𝑡)
𝑡

= 𝑘eff · 𝑔 , (2.16)

can be assigned a rate 𝛼𝐷. A spectroscopy of the two-photon resonance spectrum after a free
fall time 𝑡TOF as performed in Section 4.3.1 allows to calculate the gravitational acceleration
𝑔 = 𝜔𝐷(𝑡TOF)/𝑘eff. In analogy to Ramsey’s method, however, the resolution of this measurement
can be vastly increased by extending the pulse sequence to a Mach-Zehnder geometry, which
is the most common interferometer topology for measuring accelerations [83], by making use of
the beam splitting mechanism as described above.
Figure 2.3 shows a Mach-Zehnder geometry consisting of a 𝜋/2-, 𝜋-, and a 𝜋/2-pulse separated

by a pulse separation time 𝑇 . Stimulated two-photon transitions driven by a field with wave
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Figure 2.4: Compensating for the gravitationally induced phase shift utilizing effective Raman
wavefront accelerations a) 𝛼/𝑘eff = 0, b) 𝛼/𝑘eff = 3/4 · 𝑔, and c) 𝛼/𝑘eff = 𝑔.

vector1 𝑘eff coherently split, redirect, and recombine a matter wave by coupling the states |𝑔, 𝑝⟩
and |𝑒, 𝑝± ~ 𝑘eff⟩.
The normalized population of the excited state |𝑒⟩ in dependence of the phase shift 𝛥𝜑 between
the interferometer arms is given by a typical fringe pattern

𝑃𝑒(𝛥𝜑) ∝ 𝐴

2 [1 − cos(𝛥𝜑)] +𝐵 . (2.17)

Here, 𝐴 is the fringe amplitude and 𝐵 a measurement offset. For small phase noise, the population
𝑃𝑒(𝛥𝜑) is a bijective function and can the phase shift can be expressed as

𝛥𝛷 = arccos
(︂
𝑃𝑒 −𝐵

𝐴

)︂
, (2.18)

which finds its use for example when evaluating data that is acquired at a “midfringe” position
with maximum slope [90].
An analysis up to higher orders of the arising phase shift 𝛥𝜑 is performed in Refs. [91, 92].
Here, the focus is laid on the leading order contribution. The phase acquired during light-matter
interaction at time 𝑡𝑛 due to a time-dependent frequency change is [82]

𝜑𝑛 =
ˆ 𝑡𝑛

𝑡0

𝜔 (𝑡′) d𝑡′ , (2.19)

where any global phases are disregarded. Inserting the Doppler shift 𝜔𝐷(𝑡) induced by
gravitational acceleration (Equation (2.15)) and summing over the three pulses applied in a

1 Here, the two-photon light field is treated as a plane wave for simplicity. For deviations, see for example
Section 5.2.3.
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Mach-Zehnder geometry

𝛥𝜑 = 𝜑1 − 2𝜑2 + 𝜑3 , (2.20)

the leading order phase contribution

𝛥𝜑 = 𝑘⃗eff · 𝑔⃗ · 𝑇 2 (2.21)

can be determined1. Throughout this thesis, 𝑘⃗eff ‖ 𝑔⃗ will be assumed, unless stated otherwise.
Applying a linear frequency change rate 𝛼 on the Raman laser difference frequency creates an
effective acceleration

𝑎 ≡ 𝛼/𝑘eff (2.22)

of the Raman wavefronts. Thus, matching 𝛼 = 𝛼𝐷 (Equation (2.16)) allows to null the
gravitationally induced phase shift

𝛥𝜑 = (𝑔 − 𝛼

𝑘eff
) · 𝑘eff · 𝑇 2 , (2.23)

and determine to 𝑔. This null measurement principle is further illustrated in Figure 2.4. Here,
effective wavefront accelerations a) 𝛼/𝑘eff = 0, b) 𝛼/𝑘eff = 3/4 · 𝑔, and c) 𝛼/𝑘eff = 𝑔, lead to
different dependencies on the pulse separation time 𝑇 of the population of the excited state |𝑒⟩
at the interferometer output2. In specific, in the case depicted in Figure 2.4 c), 𝛼 = 𝛼𝐷, the
phase shift is zero with the dependence on 𝑇 fully lifted, and the interferometer’s “central fringe”
is determined (see Section 4.4 & Section 5.1).

2.1.3 Sensitivity formalism
As derived in detail in Ref. [93], sensitivity function 𝑔𝑠(𝑡), which describes the response of an
interferometer output 𝛿𝑃𝑒(𝑡, 𝛿𝛷) to an infinitesimal phase exertion 𝛿𝜑 can be written as

𝑔𝑠(𝑡) ≡ 2 lim
𝛿𝛷→0

𝛿𝑃𝑒(𝑡, 𝛿𝛷)
𝛿𝛷

. (2.24)

The sensitivity function can be used to determine interferometer phase shifts caused by any time
dependent frequency change 𝜔 (𝑡):

𝛥𝛷 =
∞̂

−∞

𝑔𝑠 (𝑡) 𝜔 (𝑡) d𝑡 . (2.25)

1 The derivation of Equation (2.21) can also be understood as measuring the position of the matter wave with
respect to the Raman wavefronts.

2 “Overcompensating” the gravitational acceleration (𝛼/𝑘eff > 𝑔) reintroduces a dependency of the interferometer’s
output signal on the pulse separation time.
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For a Mach-Zehnder interferometer with a pulse separation time 𝑇 and a 𝜋/2-pulse duration
𝜏𝜋/2, the sensitivity function 𝑔𝑠,MZ (𝑡) is the piecewise defined function [93]

𝑔𝑠,MZ (𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− sin (𝛺eff 𝑡) : 0 < 𝑡 ≤ 𝜏𝜋/2
−1 : 𝜏𝜋/2 < 𝑡 ≤ 𝑇 + 𝜏𝜋/2
+ sin

(︀
𝛺eff (𝑡− 𝑇 − 2 𝜏𝜋/2)

)︀
: 𝑇 + 𝜏𝜋/2 < 𝑡 ≤ 𝑇 + 3 𝜏𝜋/2

+1 : 𝑇 + 3 𝜏𝜋/2 < 𝑡 ≤ 2𝑇 + 3 𝜏𝜋/2
+ sin

(︀
𝛺eff (𝑡− 2𝑇 − 2 𝜏𝜋/2)

)︀
: 2𝑇 + 3 𝜏𝜋/2 < 𝑡 ≤ 2𝑇 + 4 𝜏𝜋/2

0 : otherwise

. (2.26)

It is evident, that the function 𝑔𝑠,MZ (𝑡) consists of two subsequent 𝜋/2-𝜋/2 Ramsey interferome-
ters with inverted phase sensitivity. Utilizing the sensitivity formalism, any external perturbation
d𝜑 (𝑡)/d𝑡 = 𝜔 (𝑡) of the two-state system can be translated into an interferometer phase shift 𝛥𝜑.
Hence, the formalism explained here is exploited for the systematic error analysis performed
in Section 5.2. For example, inserting the Doppler shift 𝑘eff · 𝑔 · 𝑡 of an ensemble in free fall
into Equation (2.25) with the sensitivity function 𝑔𝑠,MZ (𝑡) of a Mach-Zehnder interferometer
yields the phase shift 𝑘eff · 𝑔 · 𝑇 2 (Equation (2.21)) with the assumption 𝜏𝜋/2 ≪ 𝑇 . Moreover, the
propagation of an ensemble in a varying external magnetic field causes a perturbation 𝛥𝜔clock
(see Section 5.2.2) which, inserted in Equation (2.25) allows to derive the phase shift due to
the external perturbation. Further, by adapting 𝑔𝑠 (𝑡) such that it is nonzero only for the time
during which beam splitting pulses are applied, the AC-Stark phase shift can be inferred (see
Section 4.3.2).
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Figure 2.5: Sensitivity function 𝑔𝑠(𝑡) of a Mach-Zehnder interferometer with a pulse separation
𝑇 and a 𝜋/2-pulse duration 𝜏𝜋/2. Unlike in typical experiments, the pulse duration is exaggerated in
comparison to the pulse separation time.

2.2 Quantifying violations of the Universality of Free Fall
Various test theories such as the gravitational standard model extension (SME) [64, 75–80] and
specific violation scenarios [70, 74] exist that allow to derive quantitative predictions on the level
at which a UFF would manifest. Moreover, test theories introduce violation parameters that
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Table 2.1: Comparison of test masses A and B analyzed in the dilaton model. The charges 𝑄′1
X and

𝑄
′2
X with X being either A or B are calculated according to Ref. [74]. A larger absolute number

corresponds to a larger anomalous acceleration and thus higher sensitivity to violations of the EEP.
For Ti and Cu natural occurrence of isotopes [73] is assumed.

𝑄
′1
A −𝑄

′1
B 𝑄

′2
A −𝑄

′2
BA B Ref.

×104 ×104

9Be Ti [41] −15.46 −71.20
Cu 238U [42] −19.09 −28.62
85Rb 87Rb [48, 49] 0.84 −0.79
87Sr 88Sr [50] 0.42 −0.39
6Li 7Li a [94] 0.79 −10.07
39K 87Rb [51] −6.69 −23.69

a A UFF test comparing 6Li vs 7Li has not yet been performed.

can be constrained by taking account for existing UFF tests that have ruled out violations at a
certain level.
In order to quantify violations of the UFF in a test theory, composition-dependent “charges”
are assigned to test masses for the assumed UFF-violating interactions by assuming a different
coupling of their constituents3. These charges can, for example, be proportional to the neutron
excess and the overall baryon number in a given nucleus [95].
In the dilaton model [74], protons and neutrons may experience different accelerations. The
Eötvös ratio of test masses 𝐴 and 𝐵 can then be expressed as

𝜂A,B ∼ 𝐷1(𝑄′1
A −𝑄

′1
B ) +𝐷2(𝑄′2

A −𝑄
′2
B ). (2.27)

Here, 𝑄′1
X and 𝑄

′2
X represent effective charges of species X, and larger charges correspond to a

larger anomalous acceleration. By obtaining bounds on the Eötvös ratio 𝜂A,B, the violation
parameters 𝐷1 and 𝐷2 can be constrained accordingly.
Similarly, in the standard model extension [64], EEP violations of neutral matter are described
in terms of five parameters, which are zero in the case that the EEP is valid. The Eötvös ratio
then is

𝜂A,B ∼ 𝛽A − 𝛽B (2.28)

with violation parameters

𝛽X ≡ 𝑓
𝛽𝑒+𝑝−𝑛

X
𝛽𝑒+𝑝−𝑛 + 𝑓

𝛽𝑒+𝑝+𝑛
X

𝛽𝑒+𝑝+𝑛 + 𝑓
𝛽𝑒+𝑝−𝑛̄

X
𝛽𝑒+𝑝−𝑛̄ + 𝑓

𝛽𝑒+𝑝+𝑛̄
X

𝛽𝑒+𝑝+𝑛̄ (2.29)

that are assigned for species X. Again, the sensitivity factors 𝑓
𝛽𝑒+𝑝−𝑛

X
(𝑓

𝛽𝑒+𝑝−𝑛̄
X

) and 𝑓
𝛽𝑒+𝑝+𝑛

X
(𝑓

𝛽𝑒+𝑝+𝑛̄
X

) can be interpreted as charges proportional to the neutron excess and the overall baryon

3 For instance, in the analysis in the framework of the standard model extension performed in Ref. [64], based
on violations of Lorentz invariance, different couplings are assumed for electrons, protons, and neutrons.
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number in a given normal matter (antimatter) nucleus [64]. An interesting feature arises from
the SME: Due to an anomalous gravitational redshift in the energy of non-gravitationally bound
systems of normal matter, constraints for UFF violations of free antiparticles can be derived
from normal matter tests [64].

Table 2.1 shows the sensitivities of a selection of test mass pairs to UFF violations in the
dilaton model. In general, a “good” test species pairs fulfills 𝑚A ≫ 𝑚B or vice versa, making the
sensitivity of tests comparing isotopes worse than dual species experiments, however, in matter
wave interferometers dual isotope experiments benefit greatly from common mode rejection and
strongly suppressed systematics [49]. It is also worth noting, that for lighter isotopes such as 6Li
vs 7Li, the sensitivity 𝑄′2

Li-6 −𝑄
′2
Li-7 is enhanced as compared to heavier dual isotope tests due to

the larger relative difference [74].
When analyzed in the SME, the same test mass combinations show qualitatively different
sensitivities as shown in Table 2.2. Dual isotope tests show strongly suppressed sensitivities in
both the matter and antimatter sector. Again, a 6Li vs 7Li comparison is the exception due
to the large relative difference of the nuclei. In comparison to the torsion balance experiment
using 9Be vs Ti [41], a distinct complementarity to the test pair 87Rb vs 39K , which is used
in this thesis, is visible. While the torsion balance provides a high sensitivity to the baryon
number parameter 𝑓

𝛽𝑒+𝑝+𝑛
A

− 𝑓
𝛽𝑒+𝑝+𝑛

B
, a rubidium vs potassium combination is more sensitive

to the neutron excess parameter 𝑓
𝛽𝑒+𝑝−𝑛

A
− 𝑓

𝛽𝑒+𝑝−𝑛
B

. This complementarity also holds for the
implications that can be derived for the antimatter sector.
The test mass pair used in the best Galilean test Cu vs 238U [42] shows a remarkable sensitivity
with respect to the neutron excess parameter and the baryon number parameter. Moreover, for
the antimatter sector, a very high sensitivity to 𝑓

𝛽𝑒+𝑝−𝑛̄
Cu

− 𝑓
𝛽𝑒+𝑝−𝑛̄

U-238
is given.

When analyzing existing UFF tests in the SME, the the UFF violation parameters are not
constrained at the level of the best existing tests [64, 65]. Much rather, the global bounds suffer
from the fact that most of the tests are strongly correlated. Conducting a UFF test with a
new test mass combination, that is, with a new linear combination of violating gravitational

Table 2.2: Comparison of test masses A and B analyzed in the standard-model extension. The
sensitivity factors 𝑓𝛽𝑒+𝑝−𝑛

X
, 𝑓𝛽𝑒+𝑝+𝑛

X
, 𝑓𝛽𝑒+𝑝−𝑛̄

X
, and 𝑓𝛽𝑒+𝑝+𝑛̄

X
with X being either A or B are calculated

according to Ref. [64]. Relevant nuclide data is taken from Ref. [72]. A larger absolute number
corresponds to a larger anomalous acceleration and thus higher sensitivity to violations of the EEP.
For Ti and Cu natural occurrence of isotopes [73] is assumed.

𝑓𝛽𝑒+𝑝−𝑛
A

− 𝑓𝛽𝑒+𝑝−𝑛
B

𝑓𝛽𝑒+𝑝+𝑛
A

− 𝑓𝛽𝑒+𝑝+𝑛
B

𝑓𝛽𝑒+𝑝−𝑛̄
A

− 𝑓𝛽𝑒+𝑝−𝑛̄
B

𝑓𝛽𝑒+𝑝+𝑛̄
A

− 𝑓𝛽𝑒+𝑝+𝑛̄
BA B Ref.

×102 ×104 ×105 ×104

9Be Ti [41] 1.48 −4.16 −0.24 −16.24
Cu 238U [42] −7.08 −8.31 −89.89 −2.38
85Rb 87Rb [48, 49] −1.01 1.81 1.04 1.67
87Sr 88Sr [50] −0.49 2.04 0.81 1.85
6Li 7Li a [94] −7.26 7.79 −72.05 5.82
39K 87Rb [51] −6.31 1.90 -62.30 0.64

a A UFF test comparing 6Li vs 7Li has not yet been performed.
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interaction coupling to their constituents, thus allows to further constrain the global bounds even
though the sensitivity of the new test might be lower than state-of-the-art. As an example, the
pair 87Rb vs 39K is significantly different from all existing tests to allow for an improvement of
the SME bounds for neutral matter by two orders of magnitude when performing a comparison
at a level of ≈ 10−11 [65].



CHAPTER 3
Experimental setup

“Hofstadter’s Law: It always takes longer than you expect, even when you take into
account Hofstadter’s Law.”

— D. R. Hofstadter, 1979 [96]

This Chapter is devoted to the description of the parts of the experimental setup which were
used to obtain the results of this thesis related to matter wave interferometry with potassium.
The apparatus is designed to enable free fall experiments with a maximum free evolution time
of ≈ 200 ms. It is based on a two stage approach in which a three-dimensional magneto-optical
trap (3D MOT) [97, 98] is loaded from a transversely cooled atomic beam generated in a two-
dimensional magneto-optical trap (2D MOT) [99–101], thus enabling a high repetition rate of the
experiment. Moreover, use of a differential pumping tube allows to produce high source vapor
pressures in the 2D MOT chamber while maintaining ultra-high vacuum outside of it.
The vacuum system and peripheral installations described in Section 3.1 have been explained in
previous theses [90, 102] and are not covered in detail. Similarly, the description of the rubidium
part of the apparatus, which is described well in Ref. [90], is reduced to the optical setup that
is common to both species. The description in this thesis is rather focused on the laser system
necessary for cooling, trapping (see Section 3.2.1), and coherent manipulation (see Section 3.2.3)
of potassium which lie at the heart of the performed experiments. In Section 3.3, the Chapter
closes with a summary focused on the installed peripheral optics for Raman beam shaping and
alignment, and the state-selective fluorescence detection system.

3.1 Vacuum system and peripheral installations
The vacuum system [90, 102] (Figure 3.1) consists of three major elements: the chambers for the
(i) 2D MOT and (ii) 3D MOT, and (iii) the falling tube with a high numerical-aperture detection
zone attached. The chamber is pumped using an ion getter pump [Gamma Vacuum, TiTan-IGP,

40 l/s] and a titanium sublimation pump [VG-Scienta, ZST23] and its pressure, which typically
lies in the region of ≈ 7 × 10−10 mbar in the 3D MOT section, is monitored with a cold cathode
gauge [Vacuum Generators, ZCR40R]. With its 20 indium-sealed viewports the 3D MOT vacuum
chamber features good optical access while maintaining a certain robustness as compared to glass
cell-based systems. In the horizontal plane the 3D MOT chamber features two large viewports
with 7 cm diameter and four smaller ones with 1.5 cm diameter. During construction of the
vacuum chamber, great care was taken to choose materials that are non-magnetic to a large
extent: The parts machined in-house, i.e. the lead-sealed MOT chambers, the falling tube, and
the detection zone are made of aluminum; Commercial, copper-flange sealed vacuum parts, e.g.
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connecting the dual MOT chamber with the pumping section and the vapor source1, are made of
non-magnetic A4-type stainless steel. The complete vacuum system with exception of the ion
getter pump is housed inside a magnetic shield to suppress the influence of external magnetic
stray fields. On the inside of the magnetic shield, compensation coil pairs are installed in the
shield’s mounting frame for all three axes to provide the possibility to null residual magnetic
fields inside the shield.

3.1.1 Vertical magnetic bias field
A key element for realizing matter wave interferometry is a magnetic bias field. It creates a
quantization axis and thus allows to define optical polarizations, granting selection of certain
two-photon transitions (see Section 2.1). Moreover, by lifting the degeneracy of 𝑚𝐹 states it
becomes possible to work with atoms prepared in the 𝑚𝐹 = 0 state that is not susceptible to the
linear Zeeman effect. The vertical bias magnetic field is as well used to enable cycling transitions
during fluorescence detection (see Section 4.2).
The quantization field is generated using a coil pair in Helmholtz configuration (Figure 3.1)
that is mounted around the 3D MOT chamber and the falling tube. The Taylor series for the
axial magnetic field of a pair of coils with radius 𝑅 and distance 𝐷 driven with current 𝐼 in

2D MOT
+ coil mount 

3D MOT
+ coil mount

Falling tube

20 cm

g

Helmholtz coils

to pumps

Detection zone

Figure 3.1: Vacuum system with the 2D MOT and 3D MOT chambers, and their magnetic
coil mounts, the falling tube, and detection zone as employed in the experiment. In addition,
the Helmholtz coil pair generating the quantization magnetic field for the Raman beam splitting
is shown. For better visibility, one 3D MOT coil, all optical collimators, the rubidium and potassium
vapor sources, and the vacuum pumps have been omitted. Colored arrows indicate the light axes of
the 2D MOT (red), the 3D MOT (blue), and the Raman beam splitting light (green). The falling
distance from the 3D MOT geometric center to the detection zone is approximately 20 cm, allowing
for a maximum free fall time of ≈ 200 ms.

1 The potassium vapor source is kept at a constant temperature of ≈ 65 °C. At this temperature, potassium is
near its melting point and has a vapor pressure just below ≈ 1 × 10−6 mbar [103].
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cylindrical coordinates to O(3) near the origin is [104]

𝐵𝑧(𝜌, 𝑧) = 𝜇0𝐼

(︂
𝑅2

(𝐷2/4 +𝑅2)3/2 + 3
2
𝑅2(𝐷2 −𝑅2)

(𝐷2/4 +𝑅2)7/2 (𝑧 − 𝜌2

2 )
)︂
. (3.1)

In the Helmholtz configuration, 𝑅 = 𝐷 and Equation (3.1) is reduced to

𝐵𝑧(𝜌, 𝑧) = 𝜇0𝐼
8

5
√

5𝑅
, (3.2)

with the vacuum permeability 𝜇0. Hence a Helmholtz coil pair shows no dependency of the
vertical or radial position near the origin and generates an ideal homogeneous magnetic field in
the direction of 𝑧.
The coil pair used in this thesis has a coil radius and distance of 𝑅 = 𝐷 = 20 cm, and 𝑛 = 8
windings. Various spatial constraints imposed by the vacuum chamber and peripheral installations
are taken into account. A vertical distance from the 3D MOT center up to the upper solenoid of
4 cm is kept and the lower coil does not block optical access to the detection zone. Moreover,
the coil pair is not centered radially around the falling tube as the presence of the 2D MOT
chamber requires a few centimeters offset. The homogeneous magnetic field region allows for a
total free fall time from the 3D MOT center to the edge of the lower coil of 180 ms. Substituting
𝐼 → 𝑛 𝐼 in Equation (3.2) for a coil pair with 𝑛 windings per solenoid, the coil pair yields
𝐵𝑧(𝐼) = 360 mG/A.

3.1.2 Radio-frequency manipulation
Inducing ground state electron spin flips in alkali atoms by magnetic dipole interaction [105],
ideally with Rabi frequencies on the order of a few kilohertz, is a valuable tool to manipulate
atomic systems, e.g. for initial state preparation and purposes of system characterization. The
ground state hyperfine energy splitting of rubidium corresponds to wavelengths on the order
of centimeters. When using metal vacuum chambers, as in this thesis, instead of glass cells,
placing microwave antennas close to the atoms can be a challenge due to missing physical access.
Moreover, even when placing an antenna at a certain distance outside a metal vacuum chamber
viewport, the bore will act as a waveguide1. Here, the cutoff frequency, that is, the lowest
frequency for waves to propagate in the waveguide, for the lowest order transverse magnetic
modes [106]

𝜔𝑐(𝑟𝑣) = 𝑐
𝜒0,1
𝑟𝑣

= 𝑐
2.4048
𝑟𝑣

, (3.3)

where 𝜒0,1 is the first root of the Bessel function 𝐽0 (𝑟𝑣), and 𝑟𝑣 the radius of the bore.
Consequently, when interpreted as an ideal circular waveguide, the largest available viewport
with a bore radius of 3.5 cm imposes a cutoff frequency of 𝜔𝑐 (3.5 cm) = 3.28 GHz.
The rubidium hyperfine energy splitting is 6.834 GHz [107]. As this makes the minimum radius
of a viewport 1.7 cm, microwave manipulation of rubidium is a straightforward technique2.

1 Strictly speaking, the “depths” of the bores in the vacuum chambers are on the order of only a few wavelengths
or less and thus not sufficient to form an ideal waveguide. The approach chosen here thus only provides an
estimate for the transmission of electromagnetic radiation through vacuum viewports.

2 In fact, the viewport used in the experiment has a radius of 1 cm, just below the cutoff radius. However, no
dramatic attenuation effects were observed.
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Driving simple loop antennas with sufficient power (≈ 30 dBm) at the antenna in the case of
this thesis easily makes kilohertz Rabi frequencies feasible. The situation is different when
working with bosonic potassium. 39K, which is used in this thesis, has a ground state hyperfine
splitting of only 461.7 MHz (see Section 4.1.1) with an associated wavelength of ≈ 65 cm. The
hyperfine transition frequency thus lies significantly below the cutoff frequency of the largest
available viewports. Consequently, manipulating the atomic spin system is only possible using
the evanescent electromagnetic field that reaches into the center region of the 3D MOT chamber.

In the scope of this thesis, two types of antennas were built and tested: a half-wave dipole
antenna [108] and a three-element Yagi-Uda antenna [109]. Figure 3.2 a) shows the schematic
of a dipole antenna and a radiation diagram in dependence of the angle 𝜃 measured from the
dipole axis. The radio frequency (RF) is generated by a synthesizer [Giga-tronics 6082A] that
is amplified [Mini-Circuits ZHL-1-2W-S] as depicted in Figure 3.3. The amplifier input can be
pulsed by two1 radio frequency switches [Mini-Circuits ZYSWA-2-50DR] in series and the amplifier
is protected against back reflections through a circulator [UTE Microwave CT-1501-S] with its third
connector shortened via a 50 Ω load. When pulsed, the setup provides +28 dBm at the antenna
and −60 dBm when switched off. For the comparison of antennas, the gain factor 𝐺 [106] is a
good figure of merit. It can be determined by calculating the ratio of the power irradiated per
solid angle into the direction of maximum directivity to, e.g., that of an ideal, isotropic radiator.
Using

𝐺dBi = 10 · log10(𝐺) (3.4)

for the half-wave dipole antenna, in which 𝑙de ≈ 𝜆/2 and 𝐺 (dip) = 1.65, one finds 𝐺dBi = 2.18 dBi.
In turn, the three-element Yagi-Uda antenna displayed in Figure 3.2 b) with the dimensions

θ
θ

~S(θ)
~S(θ)

Driven element Driven element

Reflector

Director

lde

lde

ldi

lre

dde

ddi

a) b)

Figure 3.2: Schematics of a) a dipole antenna and b) a three-element Yagi-Uda antenna with
characteristic lengths 𝑙x, spacings 𝑑x, and their corresponding radiation diagrams with the irradiated
power 𝑆 per solid angle in dependence of the angle 𝜃 measured from the dipole axis. In b), the
dashed circle in the radiation diagram compares the directivity to that of a dipole antenna. The
dipole antenna consists of a driven element, the Yagi-Uda antenna combines a driven element
with passive director and reflector elements creating directivity due to interference.

1 Using only one RF switch, a measurable residual background radiation was observed.
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[ZHL-1-2W-S]
RF.amplifier

+32.dBm

50.W
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Antenna[CT-1501-S]
RF.circulator

Figure 3.3: Radio-frequency source setup feeding the antenna.

stated in Appendix D yields simulated gain factors of 𝐺 (YU) = 4.94 and 𝐺dBi = 6.94 dBi. A
Yagi-Uda antenna can be realized by expanding the driven half-wave dipole element by adding
passive elements called directors and reflectors. Choosing the correct spacing of the passive
elements and the driven element, constructive interference in the forward direction and destructive
interference in the backward direction enhance the directivity of the device. Figure 3.2 b) shows a
simple realization of such an antenna consisting of one active and two passive elements. Lengths
and spacings applicable for use in the limited space near the vacuum chamber were chosen with
the help of simulation tools [110, 111].
In Figure 3.4 a), a typical radio frequency scan driven with the Yagi-Uda antenna around
the |𝐹 = 1, 𝑚𝐹 = 0⟩ → |𝐹 = 2, 𝑚𝐹 = 0⟩ transition is depicted. With a square pulse width of
𝜏 = 400 µs, a Fourier transform-limited line with a sin(𝑥)/𝑥 behavior is expected. However,
due to an imperfect square pulse shape with “rounded” corners that is suggested by discrete
Fourier transform of the data set, the function in frequency space is more complex. Figure 3.4
b) shows a comparison of Rabi oscillations driven between the potassium states |𝐹 = 1, 𝑚𝐹 = 0⟩
and |𝐹 = 2, 𝑚𝐹 = 0⟩ using a half-wave dipole with a length of 𝑙de = 326.0 mm (Appendix D)
and a three-element Yagi-Uda antenna that were placed in the horizontal directly at the large
vacuum viewport above one of the 3D MOT beams. The Rabi frequencies are proportional
to the irradiated intensity at the location of the atoms and are thus a good measure to test
the applicability and performance of an antenna. As both measurements were performed with
+28 dBm before the antennas, the ratio of the their gain factors

𝐺 (YU)
𝐺 (dip) = 2.99 (3.5)

implies the same ratio when comparing the achievable Rabi frequencies, however,

𝛺 (YU)
𝛺 (dip) = 2.54. (3.6)

This deviation from the expected value of ≈ 20 % can most likely be attributed to inaccuracy
of the antenna gain simulation. Estimation of the mismatch loss due to the different antenna
impedances yields higher losses for the dipole antenna and can thus not explain the observed
Rabi frequency ratio.
In comparison to loop antennas that irradiate a mixed magnetic field polarization, the dipole
incorporated in the Yagi-Uda antenna features comparably clean linear polarization. The
polarization is oriented such that 𝑒⃗dip ⊥ 𝑘⃗ ⊥ 𝐵⃗𝑎 is fulfilled, where 𝑒⃗dip is the orientation of the
antenna dipole, 𝑘⃗ is the direction of radiation, and 𝐵𝑎 is the polarization of the irradiated magnetic
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Figure 3.4: a) Fourier transform-limited radio frequency scan with square pulse width of 𝜏 = 400 µs
around the |𝐹 = 1, 𝑚𝐹 = 0⟩ → |𝐹 = 2, 𝑚𝐹 = 0⟩ transition (black squares). A least squares fitting
function of the form squared Bessel (𝐽0 (𝜔mw))2 serves as a guide to the eye. A discrete Fourier
transform indicates an imperfect square pulse shape with “rounded corners”. b) Potassium Rabi
oscillations between |𝐹 = 1, 𝑚𝐹 = 0⟩ and |𝐹 = 2, 𝑚𝐹 = 0⟩ driven with radio-frequency radiation in
dependence of the pulse width. The half-wave dipole antenna (black squares) yields a Rabi frequency
of 𝛺 (dip) = 5.2 kHz. In the case of the Yagi-Uda antenna (red circles), 𝛺 (YU) = 13.1 kHz. Also
shown are damped sine fitting curves (solid black and dashed red lines). The loss of contrast for
longer pulse widths can be explained by the finite temperature of the potassium ensemble and the
directivity of the Yagi-Uda antenna.

field. A demonstration experiment is shown in Figure 3.5. The data sets a), b), and c) depict three
radio frequency scans with three configurations generating different orientations of 𝐵⃗𝑎 and 𝐵⃗𝑞,
namely 𝐵⃗𝑎 ⊥ 𝐵⃗𝑞 or 𝐵⃗𝑎 ‖ 𝐵⃗𝑞. By selection rules configuration a) with 𝐵⃗𝑎 ⊥ 𝐵⃗𝑞 can only address 𝜎
transitions with 𝛥𝑚𝐹 = ±1 which are separated from the |𝐹 = 1, 𝑚𝐹 = 0⟩ → |𝐹 = 2, 𝑚𝐹 = 0⟩
transition in frequency space by 𝑔𝐹 𝜇𝐵 𝐵𝑞 through the linear Zeeman effect. Accordingly,
switching 𝐵𝑞 into the vertical direction in configuration b) yields 𝐵⃗𝑎 ‖ 𝐵⃗𝑞 and suppresses 𝜎
transitions and allows 𝜋 transitions with 𝛥𝑚𝐹 = 0 in turn. Finally, rotating the antenna by 90°
about 𝑘⃗ in configuration c) switches back to 𝜎 transitions. Note that small remaining signals of
suppressed transitions are visible in all three scans due to slight imperfection in the orientation
of the magnetic fields and residual polarization impurity.
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Figure 3.5: Radio frequency scans for three different quantization field and antenna configurations
a), b), and c) allowing for 𝜎 or 𝜋 transitions by selection rules. The data sets are shifted by arbitrary
signal offsets for better visibility and fitted Gauss functions are overlaid to guide the eye. Data set c)
is subject to a slow drift caused by the detection that is irrelevant for this demonstration.

3.2 Potassium laser system
The potassium laser system is divided into two parts: (i) the cooling and trapping system (see
Section 3.2.1) that in combination with the shared fiber distribution system (see Section 3.2.2)
provides the light fields for the dual MOT and sub-Doppler cooling, and (ii) the coherent
manipulation system (see Section 3.2.3), which is utilized for coherent manipulation of potassium
by means of stimulated Raman transitions. All seed lasers employed are based on an interference-
filter stabilized narrow-linewidth external cavity diode laser (ECDL) design [112, 113] with
anti-reflection coated ridge waveguide lasers [Eagleyard EYP-RWE-0790-04000-0750-SOT01-0000] at
their heart. In order to provide an absolute frequency reference, an ECDL is locked via offset-free
frequency modulation spectroscopy of potassium in a vapor cell [114]. The signal of the Doppler-
free spectroscopy of potassium in its natural abundance is dominated by the 39K |𝐹 = 1/2⟩ → |𝐹 ′⟩
crossover transition, which is 49 MHz blue detuned1 with respect to the 42𝑆1/2 → 42𝑃3/2 fine
structure transition [115]. All other lasers are phase locked to this reference laser. Unless stated
otherwise, voltage-controlled oscillators (VCO) regulated by computer-controlled voltages are
utilized to provide the reference frequency for the phase locks.
In order to phase-lock two lasers, their beat node is picked up on a photo diode [Hamamatsu

G4176-03]. All locks used in the experiment are realized using a custom phase-locked loop based
on a phase-frequency detector [MCH12140] capable of detecting input signals of up to ≈ 800 MHz.

1 Taking into account the spectroscopy AOM, which is operated at a frequency of 100 MHz, the reference laser is
subject to a total blue detuning of 99 MHz (see Appendix B).
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Figure 3.6: Detunings necessary for potassium dual MOT operation. The associated detunings are
labeled 𝛥𝑥, wherein 𝑥 stands for the cooling (C) or repumping light (RP) in the 2D MOT or 3D
MOT.

For higher frequencies, mixing with local oscillators allows to transfer the beat signals into the
accepted frequency regime. The phase lock setup of the potassium Raman lasers is explained in
more detail in Section 3.2.3 and an overview of all the frequencies used in the experiment can be
found in Appendix B.
Owing to the nonlinear behavior of tapered amplifiers (TA), the power ratio of two seed frequencies
is often far off from 1:1 when a 1:1 output ratio is wanted, thus requiring flexibility in controlling to
input ratio. Moreover, it is important to note, that as this approach is subject to four-wave mixing
inside TA waveguide, effectively creating sidebands carrying a few percent of the total output
power at a separation in frequency space corresponding to the seed difference frequency in the
output spectrum. For the operation of a MOT (see Section 3.2.1) this loss is typically negligible.
Furthermore, in the case of a 39K MOT, the sidebands are well detuned by approximately one
hyperfine splitting (≈ 460 MHz) and hence their contribution to the cooling process is insignificant
due to their low scattering rate. On the contrary, when coherently manipulating an ensemble,
the presence of sidebands has to be avoided to mitigate resulting systematic biases through the
beam splitting process via additional light shifts and parasitic two-photon transitions [49, 116].
Dual-frequency seeded systems are subject to strong mode competition ultimately resulting in
insufficient stability with respect to the output power ratio. In order to avoid mode competition,
best possible spatial mode match of the two frequencies has to be ensured, i.e. by using a common
single mode fiber as a spatial mode cleaner. In addition, adding an optical isolator before the TA
reduces mode competition, and helps suppressing etalon effects that cause self seeding of the TA
and other negative behavior.
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Figure 3.7: Cavity signals of the a) 2D MOT and b) 3D MOT TA outputs (solid black lines) and
guides to the eye (red dashed lines). The signals are acquired using a non-confocal cavity, which
explains the rich mode spectrum due to excitation of transverse electric modes. The cavity used has
a free spectral range of 750 MHz and thus causes the sidebands to occur “reflected” inside of the seed
frequencies rather than at the expected frequency difference ≈ 400 MHz outside the seed in the cavity
spectrum.

3.2.1 Cooling and trapping
The laser system for cooling and trapping requires four separate light fields (Figure 3.6), two
repumping and cooling when generating the transversely cooled beam of potassium, and two
repumping and cooling for trapping in the 3D MOT. While it is in principle possible to use
identical frequencies for operating the 2D MOT and the 3D MOT, independent control over the
detunings 𝛥𝑥, wherein 𝑥 stands for the cooling (C) or repumping light (RP) in the 2D MOT
or 3D MOT, with respect to the resonances is required to operate the potassium dual MOT
system at optimal performance (see Section 4.1.2). In addition, as opposed to the 2D MOT
operation, the 3D MOT setup demands dynamic frequency and power control over the course
of a single shot. It is necessary to dynamically vary the overall intensity, the power ratio of
the associated cooling and repumping fields, and ramp their detunings, e.g. for sub-Doppler
cooling techniques (see Section 4.1.3). Figure 3.8 displays a schematic of the potassium laser
system supplying the dual MOT system.

Two-dimensional magneto-optical trap
For the 2D MOT, the two necessary laser frequencies for cooling and repumping are generated
in a double-pass acousto-optical modulator (AOM) (Figure 3.8). Contrary to standard use
of double-pass AOMs where the zeroth diffraction order is blocked, in this setup both the
doubly-diffracted and the doubly-undiffracted order are reflected back by a curved mirror and
pass the AOM a second time [118]. The AOM [Crystal Technology 3200-124] (AOM1) is driven
at a frequency of 𝑓AOM ≈ 213 MHz that is slightly less than one half of the hyperfine splitting of
39K. With the laser phase-locked near the cooling transition at ≈ 263 MHz red detuning with
respect to the reference laser using the beat signal on photo diode PD1, the double-pass AOM
setup efficiently shifts a tunable fraction of the injected light (“carrier”) by 2 × 𝑓AOM and creates
second frequency (“sideband”) close to the repumping transition. Due to missing degrees of
freedom caused by the inherent coupling of both the powers and the frequencies of the “carrier”
and the “sideband”, this setup does not grant unlimited flexibility. It is thus only to be applied
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Figure 3.8: Optical setup for generating the light fields necessary to operate the potassium dual
MOT system. The schematic is divided into two parts: the light field preparation for the 2D MOT
(dashed red box) and the 3D MOT (dashed blue box). 2D and 3D (cooling/repumping) mark
ECDL seed lasers [112, 113], OI optical isolators, AOM acousto-optical modulators, PD photo
diodes, and TA tapered amplifiers. K Ref depicts a fiber output of the reference laser module.
Except for the 2D MOT double-pass acousto-optical modulator setup and the wave plate to adjust
the power ratio in the 3D MOT seed light, all standard mirrors, lenses, and wave plates have been
omitted for clarity. The setup provides two outputs toward the shared fiber distribution system
(Figure 3.9) with a total of 200 mW fiber coupled 3D MOT light and a 930 mW free-space output for
the 2D MOT. Modified from Ref. [117].

in static frequency and power application with respect to the duration of one experimental cycle.
The applicability as a Raman frequency source is discussed in Section 3.2.3.
For ideal spatial overlap, the two frequency components are mode matched via injection into
a single mode optical fiber and guided to a TA [Eagleyard EYP-TPA-0765-01500-3006-CMT03-0000]

(TA1) for amplification afterwards. Figure 3.7 a) shows the frequency resolved output of the 2D
MOT TA for a seed ratio of 𝑃2D-RP/𝑃2D-C = 2.7 at the typical 2D MOT detuning. Finally, the
TA output is superimposed with the rubidium 2D MOT light and distributed onto the four 2D
MOT optical fibers.

Three-dimensional magneto-optical trap
As opposed to the operation of the 2D MOT laser system, the necessity of variable laser intensity
in both the cooling and repumping light and ramps of their detunings make simple solutions
such as the aforementioned double-pass AOM unfavorable. In an attempt to ensure a maximum
in flexibility, two ECDLs were set up to provide the seed frequencies for the 3D MOT tapered
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amplifier (TA2) [Eagleyard EYP-TPA-0765-01500-3006-CMT03-0000]. The 3D MOT laser system is
depicted in Figure 3.8. For the cooling laser, a phase lock to 264 MHz red detuning with respect
to the reference laser via the beat signal on photo diode PD2 is used for operation of the 3D
MOT. The dynamic control needed during sub-Doppler cooling [119] is granted in the following
way: The phase lock reference frequency is provided by a VCO with tunable control voltage. In
order to be able to ramp the laser intensity, the attenuation in the radio-frequency source driving
AOM2 [Crystal Technology 3110-120] (Figure 3.8) can be changed over time. The repumping laser
is phase locked to +189 MHz with respect to the reference laser for 3D MOT operation via photo
diode PD3 and can also be ramped in its intensity via modulation of the attenuation in the
radio-frequency source driving AOM3 [Crystal Technology 3110-120] (Figure 3.8).
Both lasers are superimposed and projected onto parallel linear polarization axes before they are
coupled into a single-mode fiber and guided to the 3D MOT tapered amplifier (TA2). Figure 3.7
b) shows the frequency resolved output of TA2 for a seed ratio of 𝑃3D-RP/𝑃3D-C = 2.3 at the
typical 3D MOT detuning. After amplification to 1.5 W the TA output light is itself coupled
into another fiber and finally superimposed with the rubidium cooling light on a dichroic mirror
and distributed onto the six 3D MOT optical fibers.

3.2.2 Shared fiber distribution system
One of the striking benefits of building a dual species experiment with rubidium and potassium is
the proximity of the wavelengths of their D2 lines which lie at 𝜆K = 766.7 nm and 𝜆Rb = 780.2 nm.
This small difference of only ≈ 13 nm allows a significant reduction of complexity of the optical
setup. After superimposing the two wavelengths, it becomes possible to use optics with a design
wavelength (𝜆Rb + 𝜆K)/2 centered between the two species or, e.g. in the case of retardation
wave plates, dichroic elements that are optimized for both wavelengths.
Figure 3.9 depicts the shared fiber distribution system [90]. Its purpose is to split the high power
light fields onto the four 2D MOT and six 3D MOT optical fibers, and one fiber for fluorescence
detection. For the 2D MOT distribution, incoming light from TA1 (Figure 3.8) is superimposed
with incoming light from the rubidium 2D MOT TA with orthogonal polarization. A subsequent
beam splitter consequently yields a 1:1 splitting with parallel polarization for both wavelengths.
This allows, after turning the polarization by 45°, for the final 1:1 splitting of the initial two
output ports and thus a distribution onto four optical fibers. In order to prevent losses when
compensating for unequal splitting at the first beam splitter, the rubidium and potassium light
are superimposed on a dichroic mirror. This enables arbitrary orientation of their polarizations
and, in specific, parallel polarizations. The beams traverse a beam splitter that separates a small
amount of light for the fluorescence detection. Afterwards, a setup of five beam splitters divides
the light onto six paths leading toward the 3D MOT optical fibers.
The shared fiber distribution system provides the ability to switch the output fibers and to
control their intensities. For operation of the 2D MOT no dynamic alteration of parameters
over the course of a single experimental cycle is necessary. Shutter S1 which is common to both
species is used to switch off the 2D MOT fiber outputs after loading the 3D MOT. For trapping
in the 3D MOT, no dynamic control over the cooling and repumping detunings, their intensity
ratio or the overall intensity is necessary. However, the subsequent steps in the experimental
sequence, such as sub-Doppler cooling and state preparation techniques demand full control
over the aforementioned parameters. Prior to superimposing the rubidium and potassium 3D
MOT light, AOM4 and AOM5 [Crystal Technology 3080-120] are traversed to provide switching
and attenuation abilities independently to both light fields. Before the light fields are split up
onto the 3D MOT fibers, a shared shutter (S2) is installed. In addition to the preparation and
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Figure 3.9: Shared fiber distribution system. The schematic is divided into three parts: the light
field distribution for the 2D MOT (dashed red red box), the 3D MOT (dashed blue box), and
the fluorescence detection (dashed green box). Light red (dark red) arrows display potassium light
(rubidium light). AOM marks acousto-optical modulators, S shutters, DM a dichroic mirror, and
TA tapered amplifiers. Rb TA labels incoming light from the relevant rubidium parts of the laser
system [90]. The input power from TA1 is 930 mW and is 200 mW from TA2 (Figure 3.8). All
standard mirrors, lenses, and wave plates have been omitted for clarity.

control of the 2D MOT and 3D MOT light, the system is capable of delivering detection light
pulses using AOM4 and AOM5 on the vertical detection axis (see Section 4.2).

3.2.3 Coherent manipulation
Opposite to the two-frequency seed approach chosen for cooling and trapping (see Section 3.2.1),
two separate TAs are used in order to avoid the drawbacks discussed before1. The optical
setup for coherent two-photon Raman coupling is displayed in Figure 3.10. Both the mas-
ter and slave laser are amplified to 1.5 W in the tapered amplifiers TA3 and TA4 [Eagleyard

EYP-TPA-0765-01500-3006-CMT03-0000] and subsequently superimposed with orthogonal polarizations.
A following polarizing beam splitter projects both light fields onto parallel polarization axes. An
AOM [Crystal Technology 3200-124] is utilized to pulse the Raman light that is fiber coupled and
guided toward the Raman collimator. Likewise, the Raman light coupling rubidium is pulsed by
a separate AOM superimposed with the potassium beam with parallel polarization on a dichroic
mirror. The system yields a typical output power of ≈ 100 mW per potassium frequency after
the fiber. In a normal experimental cycle of 1.6 s, the Raman light is pulsed up to four times
with a typical pulse width of only 15 µs. The resulting duty cycle of the Raman light of less
than a part in ten thousand and the considerably high power of ≈ 600 mW in AOM6 and the

1 The operation of a double-pass AOM setup for generating the Raman light fields was demonstrated in Ref. [117].
This approach was omitted due to missing long-term stability and troublesome mode matching of the two
orders at high powers.
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subsequent fiber coupling optics would cause the system, especially the diffraction efficiency and
angle of AOM6, to be thermally unstable. This behavior can be partially suppressed as follows.
The Raman light is kept switched on over the full experimental cycle except for a time window
of ≈ 200 ms beginning with the state preparation (Chapter 4) and ending with the detection (see
Section 4.2), thus increasing the duty cycle to almost 90 %. Furthermore, rather than switching
the RF power driving AOM6 off, the amplifier input is switched from 80 MHz to a secondary RF
source at 110 MHz. The conditions for fiber coupling are neither fulfilled for the zeroth diffraction
order, nor the 110 MHz diffraction. Hence, when the light is switched off all optical elements
before the fiber coupler are exposed to similar optical power as compared to the active state.
The same techniques are applied to the rubidium Raman laser system.
As derived in Section 2.1, two major requirements are imposed to the Raman laser frequencies:

(i) An overall Raman laser detuning with respect to the 𝐷2 line much larger than the natural
linewidth of the intermediate states has to be maintained with the aim to suppress decoherence
owing to single photon scattering while driving two-photon transitions. (ii) Sufficiently low laser
phase noise has to be ensured as the Raman laser phase is imprinted onto the ensemble during
atom-light interaction. (iii) Furthermore, the ability to carefully tune the Raman laser difference
frequency allows to choose from the manifold of allowed two-photon transitions. Specifically,
the capability to linearly ramp the difference frequency to compensate for the gravitationally
induced Doppler shift has to be given.
Figure 3.11 shows the Raman frequency generation concept. The Raman master laser beat note
with reference laser light on PD4 (Figure 3.10) is mixed with a VCO [Minicircuits ZX95-3360+]

oscillating at 𝑓VCO = 3.4 GHz. Afterwards, the resulting beat is phase-locked onto a frequency
reference at 𝑓Ref = 100 MHz [Spectra Dynamics DLR-100]. The polarity of the feedback loop and
a blue or red detuning with respect to the reference laser determine the Raman master laser
detuning:

𝛥

2𝜋 = ±𝑓VCO ± 𝑓Ref. (3.7)

With the Raman master laser phase-locked loop preserving the overall Raman laser detuning,
a second feedback loop locks the difference frequency 𝜔R = 𝜔1 − 𝜔2 of the Raman master and
slave laser. The required agility of 𝜔R is established as follows: The beat note near 462 MHz of
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Figure 3.10: Potassium Raman optical setup. Both, the master and slave laser lights, are amplified
by tapered amplifiers TA3 and TA4, superimposed with orthogonal polarizations and projected
onto parallel polarization axes at a subsequent polarizing beam splitter. AOM6 is used to pulse
the power coupled into an optical fiber guiding the light to the Raman collimator. The rubidium
Raman light, itself having parallel polarization, is pulsed using AOM7 and superimposed with the
potassium Raman light with parallel polarization. The photo diodes PD4 (Master) and PD5 (slave)
pick up the required beat notes employed in Figure 3.11. OI marks optical isolators.
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both Raman lasers on PD5 is filtered and subsequently mixed with a signal 𝑓Mult = 400 MHz
that is generated by multiplying the frequency reference 𝑓Ref = 100 MHz [Spectra Dynamics

DLR-100] by a factor of four using a frequency multiplication chain [Rupptronik GMU69124LN]. The
derived frequency is phase-locked to a direct digital synthesis (DDS) synthesizer [Spectra Dynamics

LNFS-100] frequency at 𝑓DDS ≈ 62 MHz that is capable of generating the desired linear frequency
ramps. Therefore, with the correct polarity of the feedback loop and a blue detuning with respect
to the master laser, the frequency difference is

𝜔R
2𝜋 = 𝑓Mult + 𝑓DDS ≈ 462 MHz . (3.8)
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correspond to the photo diodes marked in Figure 3.10.
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3.3 Shared interferometry and detection optics
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Fig. 3.12: Interferometry and detection optics. The
fiber outputs are labeled with respect to Figure 3.10 and
Figure 3.9. The displayed beam diameters of the Raman
and detection light fields are not to scale.

The peripheral optics necessary for oper-
ating the matter wave interferometer are
depicted in Figure 3.12. They can be split
into two parts: (i) The Raman laser light
path, including beam shaping optics, mir-
rors for vertical beam pointing, and the
adjustable retroreflection mirror on a vi-
bration isolation platform; (ii) The state-
selective fluorescence detection setup fea-
turing a vertical detection beam, and an
upper and a lower detection system.
The Raman laser light is guided to the
vacuum system in the common fiber. Af-
ter the fiber, the beam is collimated
to a diameter of 2.0 cm with a single
achromatic lens of focal length 𝑓 =
100 mm [Thorlabs AC508-100-B]. A subse-
quent adjustable diaphragm allows to
choose the beam diameter such that no
aperture thereafter, in specific the vacuum
viewports, are clipping the beam. With
the two Raman frequencies leaving the
fiber with parallel polarizations, a quarter-
wave plate is placed in the beam path
such that both frequency components are
circularly polarized with same helicity af-
terwards (𝜎/𝜎 polarization; Section 2.1).
Two protected silver mirrors are utilized
to align the beam parallel to gravity and
such that it traverses the vacuum cham-
ber. At the bottom end, the chamber is
angled by 5° with respect to the top viewport. In this way, parasitic standing waves and
etalon effects caused by the coplanar exit viewport are avoided. Shielded from air turbulences
the Raman beam enters an acoustic isolation housing and is retroreflected by an adjustable
mirror [Fichou] with a specified peak-to-valley flatness of 𝜆/20 that is resting on a commercial
vibration isolation platform [Minus K 150BM-1].
The apparatus features two separate systems for state-selective fluorescence detection (see Sec-
tion 4.2). The laser light employed for state-selective fluorescence detection is expanded to a
beam diameter of 2.0 cm and superimposed with the Raman beam on a polarizing beam splitter
to allow common use of optics and the vertical magnetic quantization field (see Section 3.1.1).
Although the bottom Helmholtz coil is located a few centimeters above the center of the lower
detection zone, this is possible as the magnetic field is not instantly zero in direct vicinity outside
of the coil pair. The upper detection is based on a bare photo diode (PD7) [OSI Optoelectronics

PIN-10D] directly attached to a viewport in the horizontal plane that is collecting fluorescence
light emitted by the atoms. It is used for short times of flight of up to a hundred milliseconds,
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e.g. when using hot ensembles with no state-selection. The lower detection utilizes an optical
system collecting fluorescence light with a large aperture lens (𝑓 = 200 mm) and imaging it
onto a photo diode (PD8) [OSI Optoelectronics PIN-10D]. The lower detection system has to be
used when working with the apparatus’s maximum times of flight on the order of two hundred
milliseconds. The resulting photo currents are amplified by a current amplifier [Femto DLPCA-200]

and then fed into a post-processing computer system.



CHAPTER 4
Matter wave interferometry with potassium

In this Chapter, single species operation of the experiment with potassium is described. In
preparation for the dual species experiments performed in this thesis (Chapter 5), a thorough
introduction of all relevant experimental techniques employed in matter wave interferometers is
provided, and differences of potassium apparatuses in comparison to typical rubidium or cesium
experiments are pointed out. In Section 4.1, a general overview on properties of potassium in
the context of laser cooling is provided and followed by a characterization of the potassium dual
MOT system with a focus on the performed sub-Doppler cooling technique in Section 4.1.3, and
state-selective fluorescence detection in Section 4.2. Based on Section 2.1, all tools for coherent
manipulation of potassium employed in this thesis are described from a technical point of view
in Section 4.3. Methods of input state preparation, coherent coupling of the potassium hyperfine
ground states with stimulated two-photon Raman transitions are explained. The Chapter
closes with Section 4.4 which elaborates on the results obtained with potassium single-species
interferometry, and finally a general discussion of the possibilities and challenges when performing
matter wave interferometry with potassium in Section 4.5.

4.1 Laser cooling of potassium

K
[Ar]4s1

39.09819
The boson 39K was chosen as the second species next to 87Rb [88] due
to its large natural abundance (Table A.2) and its electronic energy
level structure with respect to laser cooling compared to the other two
stable isotopes 40K and 41K [120]. On the one hand, bosonic potassium
features an 𝑚𝐹 = 0 state that is insensitive to magnetic fields to first
order. On the other hand, the excited state hyperfine splitting plays an
important role for handling potassium as will be described below1. The
properties and techniques described here are focused on the isotope
39K. Most of the underlying physics are, however, very similar for
the other boson, 41K, and can thus be transferred with only minimal
adaptations [119]. Due to the much larger excited state hyperfine splitting, the integer nuclear
spin, and the inverted hyperfine structure the fermion 40K acts differently and requires other
approaches [121]. Below, the energy level structure of 39K is introduced and the results for the
operation of the dual MOT system and sub-Doppler cooling are presented. A full overview on
all frequencies typically employed in the experiment is given in Appendix B.

1 Figure A.1 provides a comparison of the three potassium isotope energy levels.
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4.1.1 Energy level structure of 39K
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Fig. 4.1: D2 line energy diagram of 39K. Numerical
values are taken from Refs. [107, 122] and are stated
in ordinary frequency.

The isotope 39K features a typical alkali metal
energy level structure (Figure 4.1). Due to its
three closed electronic shells, the weakly bound
𝑠-orbital photoelectron dominates the optical
spectrum. Compared to the two neighboring
bosonic alkali species1 23Na, 85Rb, and 87Rb,
39K and 41K are subject to an anomalously low
hyperfine energy splitting, in both the ground
state and the excited states. The peculiar be-
havior of bosonic potassium can be attributed
to their anomalously small nuclear magnetic
moments (Table A.2) [123, 124]. Low hyperfine
splitting of the ground state2 has an impact on
the AC-Stark shift imposed by the potassium
Raman lasers (see Section 4.3.2). It more-
over dictates the magnitude of the quadratic
Zeeman effect (see Section 5.2.2). Likewise,
the magnitude of the excited state splitting
scales as the ground state splitting. Corre-
spondingly, in terms of laser cooling, a crucial
difference to rubidium is posed by the fact
that the full 2P3/2 state in 39K only spans3

𝜔0′3′ ≈ 5.5𝛤K, where 𝛤K = 2𝜋 · 6.035 MHz is
the natural linewidth [120]. When treating
random polarization as typically seen by an
atom in a MOT, this proximity of neighboring
states in the excited manifold causes by two
orders of magnitude stronger optical pumping into |𝐹 = 1⟩ as compared to rubidium when
shining in a near-resonant light field coupling |𝐹 = 2⟩ → |𝐹 ′ = 3⟩ [125]. Likewise, standard
sub-Doppler cooling techniques [62, 63] rely critically on the condition 𝜔0′3′ ≫ 𝛤 , as in the case
of sodium, rubidium, and cesium, or 𝜔0′3′ ≪ 𝛤 as in the case of strontium [119]. For 39K, where
𝜔0′3′ ≈ 𝛤K, photon reabsorption and heating forces inhibit efficient sub-Doppler cooling and
the cooling process becomes more complicated [119] as is explained in detail in Section 4.1.3.

1 All mentioned nuclei have a nuclear spin 𝐼 = 3/2 except for 85Rb, which has 𝐼 = 5/2.
2 The splitting is 𝜔12 ≈ 2𝜋 · 462 MHz for 39K, which is a factor of ≈ 15 smaller than in the case of 87Rb with

𝜔12 ≈ 2𝜋 · 6.834 GHz.
3 Throughout this thesis, ~𝜔𝑗𝑘 is the energy difference of two states |𝐹 = 𝑗⟩ and |𝐹 = 𝑘⟩ within a hyperfine

multiplet.
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4.1.2 Dual MOT performance
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Fig. 4.2: Detunings for potassium dual MOT op-
eration. Regions I and IV mark laser detunings for
which Doppler cooling is active. In regions I and II
sub-Doppler cooling is possible [119, 126]. Tuning
the laser into region III causes heating.

As a consequence of the strong decay chan-
nel into |𝐹 = 1⟩ when shining in cooling light
on the |𝐹 = 2⟩ → |𝐹 ′ = 3⟩ transition, the re-
pumping transition |𝐹 = 1⟩ → |𝐹 ′ = 2⟩ has
to be driven equally strong when realizing a
MOT1. This is substantially different from the
rubidium MOT case, where repumping inten-
sities on the order of a few µW/cm2 are suffi-
cient.
The energy level structure of potassium al-
lows for two detuning ranges (regions I and
IV in Figure 4.2) for the cooling light in
which Doppler cooling on the |𝐹 = 2⟩ →
|𝐹 ′ = 3⟩ transition is dominant [119, 126]. For
small detunings on the order of one linewidth,
Doppler cooling can be achieved in the low
intensity regime employing only a few satura-
tion intensities. In this case power broadening
is negligible and the scenario is comparable to
atomic systems with much larger excited state
hyperfine splitting and practically no interplay
with neighboring states. In the high intensity
regime, where power broadening has to be ac-
counted for, a second Doppler cooling region
exists for detunings larger than the excited state hyperfine splitting. While much higher intensities
are required for this regime to keep up a reasonable scattering rate, the velocity capture range is
about an order of magnitude larger as compared to the low intensity regime.
The characterization of the dual MOT system used in this thesis is performed in the following
way: With fixed laser detunings, power ratio, magnetic field gradient of the 3D (2D) MOT,
the 2D (3D) MOT cooling and repumping frequencies were scanned beginning from resonance
toward increasing red detuning in steps of half the natural linewidth. Figure 4.3 a) depicts the
normalized results of the 2D MOT characterization with a magnetic field gradient of 8 G/cm.
With a summed intensity of cooling and repumping light of 3.2 𝐼sat per beam, the 2D MOT
is clearly in the low intensity regime2. Accordingly, efficient loading is only possible within a
detuning range of the cooling laser 𝛥2D-C ≈ −0.5 . . .− 2 𝛤K near resonance with a small velocity
capture range as compared to the high intensity regime where 𝛥2D-C ≥ −5.5 𝛤K. This distinction
of the low and high intensity regime is resembled in Figure 4.3 b) showing the normalized loading
performance of the 3D MOT with a magnetic field gradient of 6.8 G/cm. Here the dashed white
line marks the scan range of Figure 4.3 a) and a very similar behavior is visible. For the 3D MOT
with its smaller beams, a summed intensity of cooling and repumping light of 7.5 𝐼sat per beam
is available and the performance optimum is shifted toward larger detunings of 𝛥3D-C ≈ −5 𝛤K

1 In fact, it is unfortunate to label these transitions in potassium “cooling” and “repumping” transitions [126]
instead of two “cooling” transitions. Throughout this thesis, however, the former case will be used for better
distinction and similarity to the natural nomenclature used in the case of rubidium.

2 For comparison, 35 𝐼sat per 2D MOT beam are reported in Ref. [125].
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and a correspondingly larger velocity capture range as expected.
Based on the performed characterization, the typical dual MOT operation parameters are chosen
as marked in Figure 4.2. Deviations from the characterization can be explained by fine tuning
performed to optimize dual species operation, long-term variations in the MOT beam power
balancing, and drifts of the overall power available. Additionally, the optimal 3D MOT magnetic
field gradient was found to be 4.5 G/cm. In dual species operation, the dual MOT system
typically yields 3 × 107 atoms of 39K within a loading time of 1 s using the stated parameters [51].
When optimized for single species operation with potassium, the loading rate can be up to
1 × 108 atoms within 1 s.

4.1.3 Sub-Doppler cooling
Temperatures commonly achieved in a 39K 3D MOT are on the order of a few millikelvin and
hence too high for matter wave interferometry. For example, an ensemble of 39K released from a
3D MOT with a temperature of 3 mK expands at a rate of 0.8 m/s. Given the maximum free
fall time in the present apparatus of 200 ms, this yields a final cloud size of 16 cm which exceeds
the spatial limitations of the vacuum chamber by far and strongly amplifies phase contributions
generated due to transverse motion of the cloud [127]. Moreover, the momentum width in
frequency space (Equation (4.2) & Section 4.3.3) negatively affects the excitation probability of
a single beam splitting pulse.
Several methods exist to significantly reduce the temperature of bosonic potassium ensembles [119,
128, 129]. These approaches are qualitatively different and demand various degrees of technical
effort, such as additional lasers resonant with the 𝐷1 line, or at ultraviolet wavelengths. In this
thesis, the dark optical molasses scheme as described in Ref. [119] is implemented. Although the
feasible final temperatures of ≈ 25 µK [119] are a factor of ≈ 4 higher than in the 𝐷1 line based
scheme reported in Ref. [129], it features the advantage that no additional lasers are necessary.
It makes use of a ramping strategy for the cooling laser detuning and intensity that induces
a dynamical transition from Doppler cooling to sub-Doppler cooling. During the cooling
sequence, controlled repumping from the dark |𝐹 = 1⟩ state allows to limit heating processes
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Figure 4.3: Normalized loading performance in dependence of the detunings 𝛥x of the cooling
and repumping lasers of the a) 2D MOT and b) 3D MOT. The summed intensity of cooling and
repumping light is 3.2 𝐼sat for the 2D MOT and 7.5 𝐼sat for the 3D MOT. Data points are available
at a step size of 0.5 𝛤K in both Figures and the presented surface plot is interpolated. The dashed
white line in Figure b) encloses the plot area shown in Figure a).
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caused by photon reabsorption and spontaneous emission [119].
Figure 4.4 a) shows the cooling sequence as employed in this thesis. The cooling process
is initiated at time 𝑡 = 0 ms by turning off the 3D MOT magnetic field and reducing the
repumping intensity to ≈ 1/100 𝐼3D-C while changing its frequency onto resonance, and jumping
onto a cooling laser detuning 𝛥3D-C = −0.7 𝛤K. Over a time span of 15 ms the detuning
is subsequently linearly increased to a final value 𝛥3D-C = −2.3 𝛤K, smoothly changing the
detuning from region I, in which Doppler cooling is dominant, into region II, where sub-
Doppler cooling becomes the leading cooling force (Figure 4.2). Simultaneously, the cooling
laser intensity 𝐼3D-C/𝐼sat = 7.5 . . . 0.9 is decreased over the same time interval. Figure 4.4 b) shows
a time-of-flight series with a CCD camera [ALLIED vision technologies Guppy GF 033B] imaging the
ensemble expansion in horizontal and the vertical (beam splitting) direction after applying the
cooling sequence. From linear fits of the squared ensemble radius over the squared time-of-flight
temperatures of 𝑇𝑥 = 28.1 µK for the horizontal and 𝑇𝑧 = 25.8 µK for the vertical direction can
be inferred [130].
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Figure 4.4: Figure a) shows the sub-Doppler cooling time sequence [119] for the cooling laser
detuning (solid black line) and its intensity (dashed red line) as implemented in the experiment.
Figure b) displays the results of a time-of-flight series obtained after cooling. The squared ensemble
radius in horizontal (vertical) direction over the squared time of flight is marked by black squares
(red circles). Due to the limited field of view in the horizontal direction caused by the aspect ratio
of the CCD chip the fitting algorithm does not converge for times longer than 15 ms. The related
temperatures can be inferred from linear fits and yield 𝑇𝑥 = 28.1 µK for the horizontal direction
(black solid line) and 𝑇𝑧 = 25.8 µK for the vertical direction (red dashed line).
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4.2 Fluorescence detection
Both the population difference of the internal states as well as the spatial distribution of an
ensemble can hold valuable information such as atom number, ensemble temperature and the
interferometer phase. For purposes of atom number detection and temperature measurements,
the system features a CCD camera [ALLIED vision technologies Guppy GF 033B] to record spatially
resolved fluorescence images of the atomic ensembles in the horizontal 3D MOT plane. Reading out
an interferometer phase, however, requires readout of the population difference of the two output
states. Next to spatially resolved absorption or fluorescence imaging [130] which is applicable
whenever atomic ensembles to be imaged are optically dense enough and spatially well separated,
state-selective fluorescence detection is a standard technique that can be applied whenever the
interferometer output ports are assigned different internal states. This is naturally the fact in an
interferometer based on stimulated Raman transitions, in which the two external momentum
states are entangled with the two internal hyperfine ground states (see Section 2.1). The state-
selective fluorescence detection principle aims to extract the normalized population 𝑃|𝐹 =2⟩ from
fluorescence signals picked up by photo diodes, which do not require spatial resolution or sufficient
spatial separation1 of the output states. Figure 4.5 a) displays a typical detection sequence
for a single species interferometer. A cooling light pulse resonant with the |𝐹 = 2⟩ → |𝐹 ′ = 3⟩
transition is applied, delivering a fluorescence signal proportional to the number of atoms 𝑁|𝐹 =2⟩
populating the |𝐹 = 2⟩ output state. Afterwards, a repumping pulse |𝐹 = 1⟩ → |𝐹 ′ = 2⟩ transfers
all atoms into |𝐹 = 2⟩. A subsequent second cooling light pulse is then proportional to the total
atom number 𝑁|𝐹 =1⟩+|𝐹 =2⟩. After a waiting time to allow all atoms to leave the detection zone,
a background pulse without atomic fluorescence 𝑐bg is recorded. This detection scheme features
immunity against total atom number fluctuations, as it is normalized:

𝑃|𝐹 =2⟩ =
𝑁|𝐹 =2⟩ − 𝑐bg

𝑁|𝐹 =1⟩+|𝐹 =2⟩ − 𝑐bg
. (4.1)

Furthermore, a post correction algorithm for intensity changes between the different cooling
pulses and the background detection is implemented to minimize the influence of detection beam
power fluctuations. For this purpose, a signal proportional to the intensity of the detection pulses
is recorded by picking up leakage light on photo diode PD6. Afterwards, possible background
variations due to intensity fluctuations between the pulses and the background detection are
corrected for by normalization. Typically, detection laser frequency noise, and arrival time
jitter which varies the overlap of the of the imaging region with the detection beam and the
atomic cloud, remain the dominating noise sources. For the case of two-species detection, a
nested scheme as shown in Figure 4.5 b) is applied. Here, the rubidium detection that is much
more robust than the one for potassium is placed around the potassium pulses in order not to
change the potassium detection sequence. To conserve full contrast in an interferometer output
measurement, mixing of the two states, e.g. by repumping the lower hyperfine ground state to
enhance the scattering rate, must be avoided at all costs. Reading out the population of the
upper interferometer output state with a high signal-to-noise ratio typically relies on the ability
to drive a cycling transition without any repumping of the lower interferometer state. This
maximizes the scattering cross section and fully suppresses losses into the dark lower state.
The optical pumping scheme is depicted in Figure 4.6. As parasitic excitations to |𝐹 ′ = 1⟩ and

1 Sufficient spatial separation is given, when the ensemble is at or below the recoil temperature in the direction
of separation and hence drifts apart faster than the ensembles expand.
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Figure 4.5: Typical detection pulse sequence for a) the single species case and b) the dual species
case. A cooling pulse |𝐹 = 2⟩ → |𝐹 ′ = 3⟩ (red), repumping all atoms into |𝐹 = 2⟩ (blue), and a
total atom number cooling pulse (green) allow to extract the normalized population 𝑃|𝐹 =2⟩ after
subtraction of the background. As an additional feature, both detection photo diodes, PD7 and PD8,
can as well be used to provide a measure for the long-term stability of the Raman light power by
triggering a Raman light pulse after completion of the state detection.

|𝐹 ′ = 2⟩ open up a decay channel into the dark ground state |𝐹 = 1⟩, the probability of an atom
reaching the closed |𝐹 = 2,𝑚𝐹 = 2⟩ → |𝐹 ′ = 3,𝑚′

𝐹 = 3⟩ transition before a dark state in this
scheme scales with the excited state hyperfine splittings over the natural linewidth 𝜔1′3′/𝛤 and
𝜔2′3′/𝛤 .
For 87Rb, 𝜔2′3′/𝛤 ≈ 44 whereas for 39K, 𝜔2′3′/𝛤 ≈ 3, yielding a factor of 15 difference in this

figure. It is thus much more likely for a 39K atom to decay into a dark state, thus inhibiting
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Figure 4.6: Optical pumping scheme with cycling |𝐹 = 2,𝑚𝐹 = 2⟩ → |𝐹 ′ = 3,𝑚′
𝐹 = 3⟩ transition

and dark |𝐹 = 1⟩ ground state in a homogeneous magnetic field. Solid blue (red) lines display wanted
(unwanted parasitic) optical transitions. Excitations to |𝐹 ′ = 1⟩ and |𝐹 ′ = 2⟩ open up possible decay
paths into the dark |𝐹 = 1⟩ state. Exemplary decay routes into |𝐹 = 1⟩ are depicted by wavy red
lines. Ideal 𝜎+-polarization is assumed. For 𝜎−-polarization the system behaves fully symmetrically.
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its contribution to a desired continuous fluorescence signal. In addition, the narrow excited
state hyperfine splitting adds a comparably strong dependence of the detection laser detuning
when making assumptions on the probability of reaching a cycling transition before a dark state
is reached. This dependency is analyzed in a fully numerical simulation for 39K yielding the
fractional loss of an atom into |𝐹 = 1⟩ over the detection laser detuning 𝛥det and is shown in
Figure 4.7.
Due to its narrow excited state hyperfine splitting, intuitive assumptions and experimental
experiences are confirmed by the simulation. In order to minimize parasitic excitations to
|𝐹 ′ ̸= 3⟩, a tight window for the detection laser detuning centered around ≈ 𝛤/4 blue detuning to
|𝐹 ′ = 3⟩ remains. Tuning the laser closer to |𝐹 ′ = 1, 2⟩ rapidly increases the scattering probability
into these states and thus the decay probability into |𝐹 = 1⟩. For larger detuning, that is blue
detuned to all states, the difference in the scattering probability into |𝐹 ′ = 3⟩ becomes negligible,
thus increasing the loss rate again.
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Figure 4.7: Loss simulation for fluorescence detection of 39K. Black squares show the simulation
result for the fractional loss into |𝐹 = 1⟩ over the detuning. The red dashed, blue dotted, green
dash-dotted, and orange loosely dashed curves display the scattering probability into |𝐹 ′ ̸= 3⟩ for
states |𝐹 = 2,𝑚𝐹 = −2 . . . 1⟩.
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Fig. 4.8: Two-photon Raman transition cou-
pling the hyperfine states |𝐹 = 1⟩ and |𝐹 = 2⟩ of
42S1/2 at a detuning 𝛥 to the 42P3/2 multiplet.
The Raman laser frequencies are 𝜔1 and 𝜔2, and
their detuning from resonance 𝛿 = 𝜔1 −𝜔2 −𝜔12.
In this thesis, numerical values for 𝛥 are stated
with respect to the reference laser (see Ap-
pendix B).

In this Section, the coherent manipulation of potas-
sium by means of stimulated Raman transitions will
be introduced. Contrary to the theoretical assess-
ment in Section 2.1, the approach chosen here will
take a technical point of view. While the analysis
in Section 4.3.1 holds for arbitrary species, a fo-
cus lays on the challenges imposed by the specific
use of potassium when realizing a Raman matter
wave interferometer. The importance of input state
preparation and different methods for it, are dis-
cussed and compared in Section 4.3.3. The Section
closes with a thorough overview of the first results
obtained with the fully operational single species
potassium interferometer (see Section 4.4).

4.3.1 Stimulated Raman transitions
Acting as the matter wave analogue to beam split-
ters and mirrors, stimulated Raman transitions [83]
are the central instrument utilized for matter wave
interferometry in this thesis. In the employed
retroreflection setup with 𝜎/𝜎-polarization1 (see
Section 3.3), a set of four parameters, namely: the
ensemble temperature 𝑇𝑎, the quantization field
𝐵𝑞, the time of flight 𝑡TOF before the pulse, and
the degree of degeneracy 𝑛 of the lower hyperfine
state2, qualitatively3 dictates the resulting two-
photon transition spectrum. This spectrum can
be obtained by applying a single Raman pulse with
an overall detuning4 𝛥 with a fixed pulse width
onto an ensemble prepared in the |𝐹 = 1⟩ manifold and carefully tuning the Raman detuning
from resonance 𝛿 = 𝜔1 − 𝜔2 − 𝜔12 around the hyperfine transition frequency as indicated in
Figure 4.8. The Raman laser polarizations in this experiment exclusively allow transitions that
fulfill 𝛥𝑚𝐹 = 0. The light fields at frequencies 𝜔1 and 𝜔2 are retroreflected and thus yield
three possible combinations. Starting from the |𝐹 = 1⟩ manifold with a degree of degeneracy
𝑛 = 3, each 𝑚𝐹 substate, whose degeneracy is lifted by the quantization field, can hence be
addressed with a triple of resonances. For the present configuration5, Figure 4.9 clarifies how

1 An overview on allowed transitions based on selection rules for a given combination of polarizations is for
example provided in Ref. [131].

2 More precisely: The state with lowest 𝐹 .
3 Explicitly calculating the amplitude of the Doppler-sensitive transitions requires knowledge of the spatial

overlap of the Raman beam and the atomic ensemble and is discussed in full detail below.
4 In this thesis, numerical values for 𝛥 are stated with respect to the reference laser (see Appendix B). For

calculations of the AC-Stark shift, for example, the effective detuning with respect to the ground state |𝐹 = 2⟩
is lower due to the spectroscopy AOM, the crossover position, and the Raman switching AOM.

5 This analysis focuses on the special case in which the atomic center of mass velocity 𝑣, the gravitational
acceleration 𝑔, and 𝑘1, 𝑘2 fulfill 𝑣 ‖ 𝑔 ‖ 𝑘1 ‖ 𝑘2.
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Figure 4.9: Two-photon transitions driven by light fields at frequencies 𝜔1 and 𝜔2 as evident in
a retroreflected setup. An ensemble with center of mass velocity 𝑣 and a constant gravitational
acceleration 𝑔 is assumed. For the Doppler-insensitive case (a)), the transition is driven by both
pairs of copropagating light fields yielding a net momentum transfer near zero. In Figures b)
and c), Doppler-sensitive transitions with net momentum transfer of two photon momenta driven
by counterpropagating light fields can be addressed by tuning 𝛿 = 𝜔1 − 𝜔2 − 𝜔12 such that the
Doppler shift 𝜔𝐷 = 𝑘eff · 𝑣 is compensated. With the atoms initially prepared the |𝐹 = 1⟩ manifold
𝜔1 is absorbed first. Thus, the convention of naming the momentum transfer b) downward (c) upward)
direction of momentum transfer k(−) (k(+)) is followed.

these triples are composed. On the one hand, a single Doppler-insensitive transition1 can be
driven by the copropagating light fields as indicated in Figure 4.9 a). On the other hand, two
pairs of the counterpropagating light fields at frequencies 𝜔1 and 𝜔2 with opposite signs in their
Doppler shift can be resonant and drive Doppler-sensitive transitions (Figure 4.9 b) & c)).
The terminology originates from the fact that the Doppler shift induced by relative motion
with velocity 𝑣 of the atomic ensemble with respect to a single light field (Equation (2.14))

𝜔𝐷 = 𝑘 · 𝑣

is common to a part in one million for the copropagating configuration and thus largely cancels
out. In turn, for the counterpropagating case 𝑘1 and 𝑘2 have opposite signs. Thus, with 𝑣 = 𝑔 · 𝑡
for a time 𝑡 of free fall in a constant gravitational field and zero initial velocity, the Doppler
shift and its time derivative for the two-photon light field 𝑘eff = 𝑘1 − 𝑘2 are (Equation (2.16))

𝛼𝐷 ≡ 𝜔𝐷(𝑡)
𝑡

= 𝑘eff · 𝑔 ,

causing the Doppler shift per time of free fall to be typically on the order of 𝛼𝐷 ≈ 2𝜋 ·25 MHz/s.
With the atoms initially prepared the |𝐹 = 1⟩ manifold, the photon of frequency 𝜔1 is always

1 In fact, this “single” transition is composed by two degenerate, copropagating transitions generated in the
retroreflection setup.
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absorbed first. Thus, the Doppler-sensitive transitions can be labeled following the convention
𝑘(+) for a momentum kick parallel to the gravitational acceleration and 𝑘(−) for the antiparallel
direction.
Figure 4.10 shows a Raman resonance spectrum obtained by applying a single square-shaped

Raman pulse with fixed width 𝜏 = 15 µs corresponding to a resolvable minimum temperature
of 𝑇𝑎 = 440 nK onto an ensemble prepared in the |𝐹 = 1⟩ manifold. As explained above,
a total of nine two-photon resonances is evident. Furthermore, another difference between
the Doppler-sensitive and -insensitive transitions becomes evident. While the insensitive
transitions are Fourier transform limited1, the Doppler-sensitive transitions naturally show a
Doppler-broadening originating from the ensemble temperature due to their velocity-selective
character [132]. For a free ensemble with temperature 𝑇 and atomic mass 𝑚, the 1/

√
𝑒 radius in

frequency space is [133]

𝜎𝐷 = 𝑘eff
2𝜋

√︂
𝑘𝐵𝑇

𝑚
. (4.2)

It is thus possible to infer the ensemble temperature in beam splitting direction from the fre-
quency spectrum. For example, the 𝑘(−) transition addressing 𝑚𝐹 = 0 in Figure 4.10 yields a
temperature in vertical direction of 𝑇𝑧 = 32.6 µK corresponding to a deviation of ≈ 20 %, as
compared to the temperatures derived from a time-of-flight series in Section 4.1.3.
The preceding analysis allows to draw conclusions on how to constrain a sensible parameter space
when taking preparations for matter wave interferometry2. As a first prerequisite, this parameter
space must allow for opening and closing an interferometer solely with the magnetically insensitive
𝑚𝐹 = 0 state, i.e. the “comoving” Doppler-sensitive transitions exciting the 𝑚𝐹 = ±1 must be
lifted out of degeneracy. Furthermore, whenever the Doppler-sensitive 𝑚𝐹 = 0 transition is
degenerate with any magnetically sensitive transition, a corresponding magnetically sensitive
excitation background causes normalization noise when detecting the interferometer output. As
a second prerequisite, it is necessary to choose the free fall time before the first interferometer
pulse 𝑡TOF such that the Doppler shift due to gravity is larger than the Zeeman splitting of
the 𝑚𝐹 = 0 and 𝑚𝐹 = ±1 states.
As evaluated in Section 2.1, lifting the 𝑚𝐹 degeneracy and operating an interferometer on the
|𝐹 = 1,𝑚𝐹 = 0⟩ ↔ |𝐹 = 2,𝑚𝐹 = 0⟩ is desirable because of the vanishing linear Zeeman shift.
With knowledge of Equation (4.2), one can derive a criterion on the minimum magnetic field am-
plitude to resolve the Doppler-broadened transitions for a given ensemble temperature. Defining
“resolution” as a transition center separation of two times the 1/

√
𝑒 width, the quantization field

must meet the condition

𝛥𝑓Zeeman
!= 2𝜎𝐷,

⇔ 𝐵𝑞,min = ℎ

2𝑔𝐹𝜇𝐵

𝑘eff
𝜋

√︂
𝑘𝐵𝑇

𝑚
. (4.3)

1 The natural linewidth of the two-photon transition is much narrower than the Fourier transform of the
excitation pulse.

2 The study presented here focuses on the “lowest possible” magnetic field amplitude. Scenarios in which the
magnetic field is much higher are possible but shall not be discussed here.
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Figure 4.10: Typical Raman resonance spectrum obtained by scanning 𝛿 = 𝜔1 − 𝜔2 − 𝜔12 and
applying single Raman pulses. The spectrum is acquired at the following parameters: 𝜏 = 15 µs,
𝐵𝑞 = 430 mG, 𝑡TOF = 43.25 ms, 𝑇𝑧 = 32.6 µK. To guide the eye, a fit function is plotted (solid
black line). For simplicity, Gauss functions are assumed for the Doppler-insensitive transitions. In
addition, a Doppler-sensitive spectrum calculated with the aforementioned parameters for a purified
𝑚𝐹 = 0 state is plotted (dashed red line). In the retroreflected setup using 𝜎/𝜎-polarization, a total of
nine resonances with 𝛥𝑚𝐹 = 0 are visible, three of which form one subset of Doppler-insensitive
transitions. The remaining two subsets of three Doppler-sensitive transitions each are labeled 𝑘(+)

for upward and 𝑘(−) for downward momentum transfer. The separation of two neighboring 𝑚𝐹 states
within one subset is 2 · 𝑔𝐹𝜇𝐵𝐵𝑞, the k(+) and k(−) transitions addressing 𝑚𝐹 = 0 are separated by
𝜔𝐷/2𝜋 = 2 · 𝛼𝐷 𝑡TOF.

with 𝑔𝐹 being the Landé 𝑔-factor and 𝜇𝐵 the Bohr magneton, to fulfill the first criterion
described above. Equation (4.3) yields 𝐵𝑞,min = 311 mG in the case of a potassium ensemble
temperature of 𝑇𝑎 = 32.6 µK. In order to satisfy the second condition, the free fall time before
the first interferometer pulse 𝑡TOF has to be chosen such that

𝜔𝐷(𝑡TOF,min) != 𝛥𝑓Zeeman + 𝜎𝐷,

⇔ 𝑡TOF,min = 2𝜋
𝑔 𝑘eff

2𝑔𝐹𝜇𝐵𝐵𝑞 + 1
𝑔

√︂
𝑘𝐵𝑇

𝑚
, (4.4)

for given temperature 𝑇 and quantization field 𝐵𝑞. Here, the first term accounts for the linear
Zeeman shift the Doppler-insensitive magnetic transitions are subject to; The second term
resembles an additional contribution maintaining a transition center separation of one 1/

√
𝑒

width. For typical parameters, Equation (4.4) gives 𝑡TOF,min = 32 ms. Substituting 𝐵𝑞 → 𝐵𝑞,min
from Equation (4.3), Equation (4.4) can be simplified to

𝑡TOF,min = 3
𝑔

√︂
𝑘𝐵𝑇

𝑚
. (4.5)

Accordingly, cold ensemble temperatures reduce the minimum time required before applying
the first Raman pulse. Not only because of making full use of available free fall time for the
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interferometer cycle, but also achieving a cold ensemble temperature and performing an 𝑚𝐹

purification relaxes constraints imposed on the experiment. There exist several input state
preparation strategies to ease the operation of an atom interferometer. These methods and the
influence of the ensemble temperature shall be discussed in Section 4.3.3.

4.3.2 One-photon AC-Stark shift
Besides the desired coupling of two states, the Raman light field exerts energy shifts onto
an atomic system by off-resonant coupling. On the one hand, coupling of off-resonant one-
photon transitions changes transition frequencies of the two-photon transitions that are driven
in an interferometer. Correspondingly, this AC-Stark shift causes phase shifts that affect an
interferometer. Because of the inherent differences to rubidium, the one-photon AC-Stark shift
is treated in this Section. On the other hand, the two-photon light shift, which imposes phase
shifts due to coupling of off-resonant two-photon transitions, is explained in Section 5.2. In
general, the frequency shift induced by an off-resonant light field with related Rabi frequency 𝛺
and detuning 𝜔 coupling two states is given by [133]

𝜔AC = 𝛺2

4𝜔 . (4.6)

In Figure 4.11, a two-photon light field with frequencies 𝜔1 and 𝜔2 via an intermediate state |𝑖⟩
at a red overall detuning1 𝛥 coupling a system of two states |𝑔⟩ and |𝑒⟩ with energy difference
𝜔12 is considered. Using Equation (4.6) and summing over the coupling of |𝑗⟩ (𝑗 ∈ 𝑒,𝑔) to the
excited state multiplet states |𝑘⟩, e.g. the 42𝑃3/2 fine structure state, via the light fields 𝜔1 and

|𝑒⟩
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Figure 4.11: Two-photon light field coupling states |𝑔⟩ and |𝑒⟩, which are separated by ℎ𝜔12, via
the intermediate state |𝑖⟩ for the case a) |𝛥| < 𝜔12 and b) |𝛥| > 𝜔12. Modified from Ref. [117].

1 The assessment in this Section behaves completely symmetric for the case in which the overall detuning is blue
with respect to the single-photon transitions.
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𝜔2, the AC-Stark shift is

𝜔AC
𝑗 =

∑︁
𝑘

𝛺2
𝑘,1

4𝜔𝑘,1
+
∑︁

𝑘

𝛺2
𝑘,2

4𝜔𝑘,2
. (4.7)

Here, 𝜔𝑘,1 and 𝜔𝑘,2 are the detunings of light fields 𝜔1 and 𝜔2 to the multiplet state |𝑘⟩. Taking
into account the selection rules for circular polarization of the Raman laser light and weighing
the contributions by their Clebsch-Gordon coefficients [88], the AC-Stark shifts of states |𝑔⟩
(|𝐹 = 1⟩) and |𝑒⟩ (|𝐹 = 2⟩) in the case of 39K are expressed using Equation (4.7):

𝜔AC
𝑔 = |𝛺1|2

4

(︂
5

24𝛥1′
+ 1

8 (𝛥1′ − 𝜔1′2′)

)︂
+ |𝛺2|2

4

(︂
5

24 (𝛥1′ − 𝜔12) + 1
8 (𝛥1′ − 𝜔1′2′ − 𝜔12)

)︂
, (4.8)

𝜔AC
𝑒 = |𝛺2|2

4

(︂
1

120𝛥1′
+ 1

8 (𝛥1′ − 𝜔1′2′) + 1
5 (𝛥1′ − 𝜔1′3′)

)︂
+ |𝛺1|2

4

(︂
1

120 (𝛥1′ + 𝜔12) + 1
8 (𝛥1′ − 𝜔1′2′ + 𝜔12) + 1

5 (𝛥1′ − 𝜔1′3′ + 𝜔12)

)︂
, (4.9)

where 𝜔1′𝑘′ is the difference frequency between state |𝐹 ′ = 1⟩ and |𝐹 ′ = 𝑘⟩, and 𝛥1′ is the overall
Raman detuning with respect to the excited hyperfine state |𝐹 ′ = 1⟩. In Figure 4.11 a) & b), two
cases, |𝛥| < 𝜔12 and |𝛥| > 𝜔12, are depicted. For |𝛥| < 𝜔12, 𝜔1 is red-detuned to |𝑔⟩ → |𝑖⟩ and
blue-detuned to |𝑒⟩ → |𝑖⟩, and exerts frequency shifts with opposite signs on these transitions.
The field 𝜔2 is red-detuned to both transitions. In this case, the differential AC-Stark shift,
which is proportional to measurable phase shifts in an interferometer,

𝜔AC
diff ≡ 𝜔AC

𝑔 − 𝜔AC
𝑒 (4.10)

can be nulled making use of the proportionality 𝛺𝑗 ∝
√︀
𝐼𝑗 in Equation (2.5) and choosing an

intensity ratio 𝐼2/𝐼1 such that 𝜔AC
diff = 0. On the contrary, if |𝛥| > 𝜔12, both 𝜔1 and 𝜔2 are

red-detuned to |𝑔⟩ → |𝑖⟩ and |𝑒⟩ → |𝑖⟩ and the differential AC-Stark shift can not be nulled.
Figure 4.12 shows the calculated intensity ratios 𝐼2/𝐼1 yielding 𝜔AC

diff = 0 in dependence of
the detuning 𝛥 for a) 39K, and b) 87Rb. Given two criteria, namely a high Rabi frequency
𝛺eff ∝

√
𝐼1 · 𝐼2 (Equation (2.6)), which requires a ratio 𝐼2/𝐼1 ≈ 1, and a detuning 𝛥 large enough

to keep single-photon scattering causing decoherence at a minimum. Unfortunately, in the case
of 39K detunings 𝛥 yielding a ratio 𝐼2/𝐼1 ≈ 1 are in the range of 𝛥 ≈ 2𝜋 · 200 MHz yielding an
unacceptably high single photon scattering rate. In turn, use of 87Rb conveniently allows one to
choose detunings of up 𝛥 ≈ 2𝜋 · 2.5 GHz with an intensity ratio for 𝐼2/𝐼1 ≈ 2.5.
The analysis present here shows the inherent problems that occur, when working with species
that have a small hyperfine energy splitting, e.g. bosonic potassium1. Effectively, the condition
𝛥 < 𝜔12 for AC-Stark compensation dictates very low detunings 𝛥 for ratios 𝐼2/𝐼1 that keep up
a reasonably high Rabi frequency and practically inhibits AC-Stark compensation. Instead, a

1 A related problem concerning the AC-Stark shift will rise in future experiments [59, 60] employing ultracold
ensembles or non-classical states demanding very large Raman detunings in order to further suppress single
photon scattering.
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large detuning 𝛥 ≫ 𝜔12 is chosen in this thesis and a ratio 𝐼2/𝐼1 = 1 allows a maximum effective
Rabi frequency.

Estimation of the AC-Stark-induced phase shift
An estimate for the phase shift induced by the AC-Stark effect in a potassium interferometer
can be computed by evaluating the spatial convolution of 𝜔AC

diff(𝑡) (Equation (4.10)) induced
by a Gauss-shaped Raman beam and a freely expanding atomic ensemble in dependence of
the evolution time. The result yields a mean AC-Stark shift, which can then be employed to
evaluate the phase shift on an interferometer utilizing the sensitivity formalism described in
Section 2.1. Numerically evaluating the integral

𝛥𝛷AC =
∞̂

−∞

𝑔𝑠,MZ (𝑡) 𝜁 (𝑡) 𝜔AC
diff(𝑡) d𝑡 (4.11)

with the sensitivity function 𝑔𝑠,MZ (𝑡) (Equation (2.26)) an additional function 𝜁 (𝑡), that ≡ 1
during the Raman light pulses, allows to infer the phase shift due to the AC-Stark shift. For
typical parameters1, a phase shift of 𝛥𝛷AC = −114 mrad and a related bias acceleration of
−1.74 × 10−5 m/s2 can be expected. Assuming Raman power and detuning drifts2 that are
sufficiently slow compared to the time required to obtain to fringes with opposite sign of 𝑘eff,
phase shifts 𝛥𝛷AC induced by the AC-Stark shift can be suppressed by using the 𝑘-reversal
scheme (see Section 4.4.2). An analysis of the total Raman power fluctuations on a single cycle
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Figure 4.12: Raman laser frequency intensity ratio 𝐼2/𝐼1 yielding a nulled differential AC-Stark
shift 𝜔AC

diff in dependence of the detuning 𝛥 for a) 39K, and b) 87Rb.

1 The calculation is based on a freely expanding 39K ensemble with a temperature of 𝑇𝑎 = 32 µK, a 1/
√

𝑒 initial
size of 𝜎0 = 1 mm, and a free fall time 𝑡TOF = 43 ms before the first Raman pulse. For the beam splitting light
field, a total Raman power of 200 mW at a 1:1 power ratio of the two frequencies, a 1/𝑒2 radius of 9.6 mm,
a red detuning 𝛥 = 2𝜋 · 3.3 GHz, a pulse separation time of 𝑇 = 20 ms, and a 𝜋-pulse width 𝑡𝜋 = 15 µs are
assumed.

2 Here, the assumption that fluctuations of the Raman pulse width, the pulse separation time, and the Rabi
frequency, all of which change the sensitivity function, and fluctuation of the Raman power ratio, are negligible
as compared to total power fluctuations, is made.
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time scale using a monitor pulse at the end of a sequence (see Section 4.2) yielded a shot-to-shot
noise of 0.92 % corresponding to AC-Stark-induced noise at a level of ≈ 1.60 × 10−7 m/s2.
The inferred noise can hence not be resolved at the current level of short-term stability (see
Section 4.4.2). Furthermore, no power drift limiting the suppression of the AC-Stark bias on
the time scale one 𝑘-reversal cycle could be observed. A measurement of the long-term power
drift allows to derive a suppression of the AC-Stark bias term by 4 orders of magnitude to a
level of ≈ 1.32 × 10−9 m/s2.

4.3.3 Input state preparation
One lever to increase the relative excitation in a single pulse or the contrast of an interferometer
is reducing the degree of degeneracy 𝑛 of the ensemble by 𝑚𝐹 purification. For example, applying
a pulse onto the |𝐹 = 1⟩ manifold with a degree of degeneracy 𝑛 = 3 as displayed in Figure 4.10
yields a maximum relative excitation probability 1/𝑛 ≈ 0.33. Equally important, the ensemble
temperature plays an essential role when driving Doppler-sensitive transitions. It imposes
constraints on experimental parameters such as the quantization field and the time of free fall
before the first Raman pulse. Furthermore it affects the maximum excitation that is feasible in
a single pulse and thus is an important factor when estimating the contrast that is achievable in
an interferometer. Finally, for a finite Raman beam size with Gaussian profile, the ensemble
expansion transverse to the direction of beam splitting induces a spatially inhomogeneous Rabi
frequency and leads to dephasing and a loss of maximum excitation for larger expansion times.

Optical pumping
Any deviation from a pure input state diminishes the achievable contrast when projecting the
interferometer states in the detection process [82]. After loading the potassium 3D MOT, the
final sub-Doppler cooling step (see Section 4.1.3) naturally accumulates a large fraction in
the |𝐹 = 1⟩ state making use of a gray molasses technique [119]. In order to initialize a pure
input state, the repumping light is switched off completely for a duration of 1 ms causing optical
pumping into the dark |𝐹 = 1⟩ state by the end of the cooling sequence. The outcome is a pure
|𝐹 = 1⟩ state with the atoms equidistributed over the 𝑚𝐹 substates that can be used as an input
for the interferometer. Likewise, it is possible to pump all atoms into the |𝐹 = 2⟩ manifold by
turning off the cooling laser in the final stage of the sub-Doppler cooling sequence. However,
because of the higher degree of degeneracy (𝑛 = 5) this is typically unfavorable unless combined
with subsequent state preparation steps.

Magnetic substate purification
As mentioned above, reducing the degree of degeneracy allows for higher contrast in a relation
inversly proportional at the cost of removing a fraction of the initial atom number. Once lifted
out of degeneracy by a magnetic field, the different magnetic substates can be addressed by
means of magnetic dipole transitions employing a radio frequency source (see Section 3.1.2).
Both hyperfine ground states are very long-lived causing the natural linewidth to be extremely
narrow. In this regime, spontaneous emission is practically zero and resolving the transition is
always Fourier transform limited allowing for a very high fidelity.
Figure 4.13 shows a typical magnetic substate purification sequence. Initially, the atomic ensemble
is optically pumped into the |𝐹 = 2⟩ manifold with all magnetic substates equally populated.
Subsequently, an 𝑚𝐹 state selection is performed by applying a high fidelity radio frequency
𝜋-pulse on the |𝐹 = 2,𝑚𝐹 = 0⟩ → |𝐹 = 1,𝑚𝐹 = 0⟩ transition that ideally transfers a fraction of
20 % of all atoms. Finally, the atoms remaining in the |𝐹 = 2⟩ manifold are removed by resonant
scattering of photons on the |𝐹 = 2⟩ → |𝐹 ′ = 3⟩ transition. Commonly a traveling wave is used
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Figure 4.13: Simplified magnetic substate purification sequence. The ensemble is initially prepared
in the |𝐹 = 2⟩ manifold with the atoms equidistributed over all magnetic substates. Coherent radio
frequency manipulation allows to transfer a fraction of 20 % of all atoms in to the |𝐹 = 1,𝑚𝐹 = 0⟩
state. Finally, atoms remaining in |𝐹 = 2⟩ are removed using resonant scattering of photons.

to remove unwanted atoms by imbalanced light pressure. As the energy level structure requires
well defined polarization and quantization axis to address cycling transitions (see Section 4.2),
a standing wave created using the detection light path (see Section 3.3) is used. A separate
traveling wave, e.g. in the horizontal plane, could be used to apply light pressure for atom removal
and has been demonstrated in the present apparatus for rubidium. For potassium, however, this
approach is linked to adiabatically switching to a horizontally oriented magnetic field which
would impose additional constraints to the timing and make the experimental sequence more
complicated. Contrary to light pressure, this mechanism removing the atoms is based on heating
the unwanted fraction. Sufficient heating causes much higher expansion rates as compared to the
remaining atoms. In this way the heated fraction is prone to losses when colliding with the walls
of the falling tube. Residual heated atoms fall into the detection zone at very low densities and
thus do not contribute strongly to the detection signal. The removal mechanism is relying on
cycling transitions which do not exist for the |𝐹 = 1⟩ manifold. All state preparation techniques
are hence designed such that at the end of the sequence the fraction to be removed is situated in
the |𝐹 = 2⟩ state.
Alternatively, the described state preparation process can be enhanced in terms of the final
atom number by enrichment of the 𝑚𝐹 = 0 state via additional optical pumping. Starting
from the |𝐹 = 1⟩ manifold, a first radio frequency 𝜋-pulse transfers ≈ 33 % of all atoms into the
|𝐹 = 2,𝑚𝐹 = 0⟩ state. Afterwards, a repumping pulse allows to redistribute all remaining atoms
from |𝐹 = 1⟩ over the |𝐹 = 2⟩ manifold, hence adding an additional fraction of 2/3 · 1/5 ≈ 13 %.
A second radio frequency pulse and a following removal of the remaining atoms as described in
the simplified sequence above yields a total of ≈ 46 % prepared in |𝐹 = 1,𝑚𝐹 = 0⟩.

Velocity selection
Already in 1991 it was shown in Ref. [132] that the velocity-selective character of two coun-
terpropagating lasers can be used to select a narrow velocity slice out of an atomic ensemble
with a given velocity distribution with width 𝜎𝐷. Here, advantage is taken of the fact that the
two-photon transition can be applied for long time scales 𝜏 such that the Fourier transform
width 𝜎𝑝 ∝ 1/𝜏 of the pulse fulfills the relation 𝜎𝑝 ≪ 𝜎𝐷. The velocity interval in beam splitting
direction that is selected by 𝜎𝑝 can then be assigned a temperature equivalent to the analysis in
Section 4.3.1. Recalling the generalized Doppler shift (Equation (2.14)) & Equation (4.2) can
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Figure 4.14: Simplified velocity selection sequence. The ensemble is initially prepared in the |𝐹 = 2⟩
manifold with the atoms equidistributed over all magnetic substates. A velocity-selective Raman
pulse allows to transfer a narrow velocity class into |𝐹 = 1,𝑚𝐹 = 0⟩. In the subsequent step, atoms
remaining in |𝐹 = 2⟩ are removed using resonant scattering of photons.

be solved for the temperature yielding

𝑇𝑧 = 𝑚

𝑘𝐵

(︂
2𝜋𝜎𝑝

𝑘eff

)︂2
. (4.12)

In the following, an ideal square pulse of full width 𝜏 with the associated power spectrum in
frequency space

𝐹 (𝑓) = 𝐴 ·
(︂

sin(𝜋 𝜏 · 𝑓)
𝜋 𝜏 · 𝑓

)︂2
(4.13)

with a normalization factor 𝐴 is assumed. The 1/
√
𝑒 radius1 𝜎𝑝 then is

𝐹 (𝜎𝑝) = 𝐴√
𝑒
,

⇔ 𝜎𝑝 ≈ 0.38 · 1
𝜏
. (4.14)

Hence for a square pulse with width 𝜏 , Equation (4.12) can be rewritten as

𝑇𝑧 ≈ 𝑚

𝑘𝐵

(︂
0.76𝜋
𝑘eff 𝜏

)︂2
. (4.15)

A typical temperature corresponding to a potassium ensemble velocity-selected with a square
pulse 𝜏 = 15 µs is thus 𝑇𝑧 = 440 nK in beam splitting direction; significantly lower temperatures
have been accomplished with longer pulses using sodium and cesium [46, 132]. A simple velocity
selection process is depicted in Figure 4.14. The sequence is indeed very similar to the magnetic
substate purification (Figure 4.13). Instead of the radio frequency pulse, a velocity-selective
Raman transition is employed to transfer a narrow velocity class into |𝐹 = 1,𝑚𝐹 = 0⟩ before
clearing the |𝐹 = 2⟩ state from remaining atoms. Clearly, the described sequence performs an
𝑚𝐹 state selection as well. However, as assessed in detail in Section 4.3.4 the fraction of atoms

1 Equation (4.12) only holds for equilibrium temperature distributions with Gaussian shape, however, for the
central peak of a distribution ∝ sin(𝑥)/𝑥 a Gauss function is a good approximation.
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that can be transferred by a velocity selection pulse is strongly limited by the convolution of
the ensemble’s initial velocity distribution with the Raman pulse Fourier transform. Hence,
the transferable fraction is far away from the ≈ 46 % that can be achieved in a purely radio
frequency based state preparation. Schemes based on a combination of radio frequency transfer
and velocity selection can enhance the fraction that is prepared as shown in Figure 4.15.

4.3.4 Influence of the ensemble temperature in a Doppler-sensitive transition
It is obvious, that the reduction in the effective temperature, which can be realized by velocity
selection as described in Section 4.3.3, has to come at a cost. Naturally, the convolution of an
ensemble’s velocity and spatial distribution with the Raman pulse Fourier transform and
the spatial profile of the beam also determine the relative excitation probability that can be
attained [134]. Accordingly, the temperature decrease accomplished with two-photon velocity
selection is directly linked to an atom number reduction. With knowledge of the Raman beam
and pulse characteristics, the ensemble temperature and its expansion time dynamics it is possible
to quantitatively understand the influence of the ensemble temperature on the maximum possible
excitation that can be achieved in a Raman pulse.
The spatially dependent Rabi frequency in a Gaussian beam with a 1/𝑒2 radius of 𝜎𝐿 is

𝛺0(𝑟) = 𝛺0 · 𝑒−2
(︁

𝑟
𝜎𝐿

)︁2

(4.16)

with a maximum frequency of 𝛺0 = 𝜋/𝜏𝜋. For an atom with subject to a Doppler shift induced
by velocity 𝑣 in beam splitting direction (Equation (2.14)), the off-resonant effective Rabi
frequency [82]

𝛺eff(𝑟,𝑣) =
√︀

(𝛺0(𝑟))2 + (𝑘eff · 𝑣)2 (4.17)

allowing to express the excitation probability of an atom at radial position 𝑟 with velocity 𝑣 [135]:

𝑝(𝑟,𝑣,𝑡) =
(︂

𝛺0(𝑟)
𝛺eff(𝑟,𝑣)

)︂2
· sin

(︂
𝛺eff(𝑟,𝑣)

2 𝑡

)︂
. (4.18)

The velocity probability distribution for an ensemble with particles of mass𝑚 and and temperature
𝑇 𝑧 is given by the 1D Maxwell-Boltzmann distribution [136]

𝑓(𝑣) =
√︂

𝑚

2𝜋 𝑘𝐵 𝑇 𝑧
· 𝑒− 1

2
𝑚𝑣2

𝑘𝐵𝑇 𝑧 . (4.19)

For a thermal ensemble with two-dimensional spatial distribution

𝑛(𝑟,𝑡) = 1
2𝜋 𝜎2

𝑎 (𝑡) · 𝑒− 1
2

(︁
𝑟

𝜎𝑎 (𝑡)

)︁2

(4.20)

the expansion dynamics are fully described by [130]

𝜎𝑎 (𝑡) =
√︂
𝑘𝐵𝑇 𝑥,𝑦

𝑚
𝑡2 + 𝜎2

𝑎,0 (4.21)
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Figure 4.15: Enhanced velocity and magnetic selection sequence. The ensemble is initially prepared
in the |𝐹 = 1⟩ manifold with the atoms equidistributed over all magnetic substates. Coherent radio
frequency manipulation allows to transfer a fraction of ≈ 33 % of all atoms in to the |𝐹 = 2,𝑚𝐹 = 0⟩
state and the following optical pumping distributes remaining |𝐹 = 1⟩ atoms over the |𝐹 = 2⟩ manifold,
adding ≈ 13 % to |𝐹 = 2,𝑚𝐹 = 0⟩. A subsequent velocity-selective Raman pulse allows to transfer a
narrow velocity class back into |𝐹 = 1,𝑚𝐹 = 0⟩. Finally, atoms remaining in |𝐹 = 2⟩ are removed
using resonant scattering of photons.

with 𝜎𝑎,0 being the initial cloud size. Equation (4.21) includes the characteristic expansion
velocity of a thermal ensemble

𝑣exp =
√︂
𝑘𝐵𝑇 𝑥,𝑦

𝑚
. (4.22)

Using the foregoing analysis, the excitation that can be accomplished with a Doppler-sensitive
pulse can be obtained by calculating the convolution [135]

𝑃 (𝑡,𝑡exp) = 2𝜋
ˆ ˆ

𝑟 · 𝑓(𝑣) · 𝑛(𝑟,𝑡+ 𝑡exp) · 𝑝(𝑟,𝑣,𝑡) d𝑟 d𝑣. (4.23)

Here, arbitrary times 𝑡exp can be chosen as a time offset such that free expansion in the Raman
beam during free fall prior to the pulse is taken into account. As an example, numerically
evaluating Equation (4.23) allows to derive the time dynamics of the relative population of
|𝐹 = 2⟩. Figure 4.16 a) depicts Rabi oscillations for a 39K ensemble at temperature 𝑇 3D

K = 25 µK
and 𝑡exp = 0 ms with an assumed Rabi frequency of 𝛺0 = 𝜋/15 µs. As a cause of dephasing
induced by the inhomogeneous effective Rabi frequency (Equation (4.17)) due to the ensembles
velocity spread, the Rabi oscillations are damped. In Figure 4.16 b), experimental data obtained
by scanning the Raman pulse width applied on to magnetically purified state (Figure 4.13) after
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𝑡exp = 43 ms can be well correlated when taking into account spontaneous emission1 and correcting
for an offset caused by the detection. More generally, evaluating the integral Equation (4.23)
allows to map the feasible maximum Raman excitation onto a two-dimensional parameter space
consisting of the ensemble’s expansion time and its temperature. Figure 4.17 a) shows the feasible
Raman excitation in a contour plot over the parameters: expansion time 𝑡exp and the expansion
velocity 𝑣exp of the 1/

√
𝑒 width of an atomic ensemble. Here, using the expansion velocity instead

of the temperature using Equation (4.22) is favorable in order to provide a way to compare the
resulting data independently of the atomic species. Figure 4.17 a) was computed numerically for
a range of expansion velocities corresponding to potassium ensemble 3D temperatures2 between
𝑇 3D = 50 nK . . . 50 µK, and expansion times 𝑡exp = 0 ms . . . 200 ms constrained by the maximum
free fall time in the vacuum chamber used in this thesis. For the simulation, the expansion
dynamics of a free thermal gas with a degree of degeneracy of 𝑛 = 1 and a fixed initial size of
𝜎𝑎,0 = 1 mm are assumed for simplicity. As the effective Rabi frequency varies throughout the
parameter space, the displayed excitation values represent global maxima obtained by scanning
the corresponding pulse width around 𝜏𝜋 = 15 µs. In Figure 4.17 b), a Raman 𝜋-pulse width
of 𝜏𝜋 = 15 µs is considered and the maximum excitation over the expansion time is plotted for
two typical 3D temperatures, namely 39K at 𝑇 3D

K = 25 µK and 87Rb at 𝑇 3D
Rb = 5 µK. While the

low expansion time limit is governed by the ensemble temperature in beam splitting direction,
the influence of transverse expansion of the gas is dominating for longer expansion times and
explains the more benign behavior of 87Rb with its higher mass and typically lower temperature
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Figure 4.16: a) Rabi oscillations for a 39K ensemble at temperature 𝑇 3D
K = 25 µK and 𝑡exp = 0 ms

with an assumed Rabi frequency of 𝛺0 = 𝜋/15 µs. b) Rabi oscillations (𝑡exp = 43 ms) obtained
by scanning the Raman pulse width applied on to magnetically purified state (black squares) and
corresponding simulated data taking into account spontaneous emission (solid black line). The data
is corrected for a signal offset caused by the detection. The dashed red line represent the simulation
data without spontaneous emission.

1 The simulation data in Figure 4.16 b) is altered by adding a spontaneous emission component that is linear in
time and based on experimental data. It represents a first order approximation of the optical pumping of the
two level system by single photon scattering.

2 For the calculation of Figure 4.17 a), isotropic temperatures are explicitly assumed in order to emulate the
conditions before a state preparation Raman pulse or the first interferometer pulse without further state
preparation. For the two specific examples, the degree of degeneracy 𝑛 ̸= 1 has to be taken into account.
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as compared to 39K. The influence of transverse motion becomes even more significant in the
third case plotted in Figure 4.17 b) which displays a 39K ensemble with anisotropic temperature
𝑇 𝑥,𝑦

K = 25 µK and 𝑇 𝑧
K = 440 nK after velocity selection with a pulse 𝜏 = 15 µK. Due to the low

temperature in beam splitting direction the excitation probability is near unity for low expansion
times. For longer times however a crossing with the curve plotted for 87Rb is imminent already
at 𝑡exp ≈ 60 ms.
One obvious conclusion of this simulation is that even though velocity selection can help in
realizing temperatures in beam splitting direction that are significantly lower than the initial
temperature, the transverse expansion plays a very important role when facing long expansion
times that are inherently linked to interferometers with long pulse separation times. As can
be seen from Equation (4.22), the transverse expansion plays an increasingly important role
when working with atoms with lighter mass. Moreover, while velocity selection can increase
the maximum excitation for short times, lines as marked in Figure 4.17 a) may only be parallel
shifted yielding higher excitation when realizing lower three-dimensional temperatures, e.g. when
using Bose-Einstein condensates or applying techniques such as delta-kick cooling [58, 137] as
discussed in Chapter 6.
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Figure 4.17: a) Surface plot of simulation of Raman excitation probability in dependence of the
expansion time and velocity. The dashed lines mark two typical expansion velocities for 87Rb (𝑇 3D

Rb =
5 µK) and 39K (𝑇 3D

K = 25 µK). The corresponding maximum Raman excitations in dependence of
the expansion time are plotted in b) (solid black line and dashed red line). For comparison, the blue
dotted line shows a 39K ensemble with anisotropic temperature after velocity selection (𝑇 𝑥,𝑦

K = 25 µK
and 𝑇 𝑧

K = 440 nK).
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4.4 Measurements of local gravitational acceleration
Using the methods explained in this Chapter, it was possible to perform the first inertial-sensitive
measurements using potassium. In this Section, an introduction into the measurement protocol
is provided and the first results are presented. A long term measurement was performed yielding
an absolute value for the local gravitational acceleration.

4.4.1 Experimental methods

𝑡

𝑧

𝑔

|𝐹 = 1, 𝑝⟩
|𝐹 = 2, 𝑝 ± ~ 𝑘eff⟩

𝑘
eff

𝑘
eff

0 𝑇 2 𝑇

𝜋/2 𝜋 𝜋/2

Fig. 4.18: Space-time diagram of a Mach-
Zehnder matter wave interferometer in a con-
stant gravitational field for the downward (thick
lines) and upward (thin lines) direction of mo-
mentum transfer. Stimulated Raman transi-
tions at times 0, 𝑇 , and 2𝑇 couple the states
|𝐹 = 1, 𝑝⟩ and |𝐹 = 2, 𝑝± ~ 𝑘eff⟩. The velocity
change induced by the Raman pulses is not to
scale with respect to the gravitational accelera-
tion.

A typical measurement cycle is performed as fol-
lows. Within 1 s, the 3D MOT is loaded with
≈ 1 × 108 atoms of 39K, and the ensemble is sub-
sequently cooled down to 𝑇𝑎 ≈ 20 µK using the
methods described in Section 4.1. After optically
pumping all atoms into the |𝐹 = 1⟩ manifold at
the end of the sub-Doppler cooling stage, the
atoms are released into free fall by turning off all
cooling light fields using the responsible acousto-
optical modulator and shutter (see Section 3.2.1).
The Raman detuning, that coherently couples
|𝐹 = 1,𝑚𝐹 = 0⟩ → |𝐹 = 2,𝑚𝐹 = 0⟩ is operated at
a Raman detuning 𝛥 = 2𝜋 · 3.3 GHz and the typ-
ical 𝜋-pulse width is 𝜏𝜋 = 15 µs. Applying a pulse
sequence consisting of a 𝜋/2-, a 𝜋-, and a 𝜋/2-pulse,
transferring ~ 𝑘eff momentum each, and separated
in time by the pulse separation time 𝑇 , and simulta-
neously applying a constant frequency change rate
𝛼 on the Raman difference frequency, the atomic
wave packet can be coherently split, redirected,
and recombined, leading to interference at the fi-
nal beam splitting pulse (Figure 4.18). Afterwards,
the population of the interferometer output ports
is read out using state-selective fluorescence detec-
tion in the upper detection zone (see Section 4.2 &
Section 3.3). A full experimental cycle takes ≈ 1.6 s, limited by the 3D MOT loading time.

4.4.2 Suppression of phase shifts using the 𝑘-reversal method
In the presence of external perturbations, additional contributions enter the interferometer
phase shift besides the gravitationally induced phase shift 𝛥𝜑. As indicated in Figure 4.18 and
explained in Section 4.3.1, the direction of momentum transfer of a Raman transition, upward
or downward, can be chosen by adequately tuning the difference frequency of the two light fields
onto the corresponding two-photon resonance. Classifying additional phase shift contributions
into components that are dependent or independent of the direction of momentum transfer, the
total interferometer phase shift is

𝛥𝜑
(+)
tot = 𝛥𝜑+𝛥𝜑ind +𝛥𝜑dep, (4.24)

𝛥𝜑
(−)
tot = −𝛥𝜑+𝛥𝜑ind −𝛥𝜑dep, (4.25)
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where the superscript (±) marks the phase shift for the downward 𝑘(−) and upward 𝑘(+) directions
of momentum transfer1. In consequence, obtaining the total phase shifts 𝛥𝜑(±)

tot with different
directions of momentum transfer (“𝑘-reversal”) allows to compute the half difference phase

𝛥𝜑tot ≡ 𝛥𝜑
(+)
tot −𝛥𝜑

(−)
tot

2 = 𝛥𝜑+𝛥𝜑dep, (4.26)

in which all phase shifts 𝛥𝜑ind independent of the sign of 𝑘eff are canceled [127, 138]. Common
examples for phase shifts that are independent of the direction of 𝑘eff are the quadratic Zeeman
shift2 and the one-photon AC-Stark shift. Bias contributions that are dependent on the direction
of momentum transfer are, e.g., shifts due to wavefront distortions, the Coriolis force, and
the two-photon light shift3. As the 𝑘-reversal method requires at least two single shots, biases
can only effectively be rejected if the bias contribution that shall be canceled is constant, or
changing sufficiently slowly over the duration of acquiring one data point pair. The strong
suppression of bias effects is demonstrated in Figure 4.19. The displayed measurements of
acceleration in Figure 4.19 a) are obtained by subsequently acquiring 10 data points per direction
of momentum transfer (𝛥𝑎(+) & 𝛥𝑎(−)) while scanning the interferometer phase across a full
fringe. Tracking the position of the fringe minimum then allows to determine the change in
acceleration. The signals for the upward and downward direction of momentum transfer are
subject to both, an oscillation and a time-independent bias, which can for example be caused
by time-dependent magnetic field changes or AC-Stark shifts induced by fluctuating Raman
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Figure 4.19: a) Measurements of local acceleration 𝛥𝑎(−) for the downward (black squares and
solid black line) and 𝛥𝑎(+) for the upward direction (red circles and dashed red line) of momentum
transfer obtained by repetitively scanning across a full fringe with alternating direction of momentum
transfer, and the half difference signal

[︀
𝛥𝑎(+) −𝛥𝑎(−)]︀ /2 (blue diamonds and dotted blue line).

Sinusoidal functions with a linear offset drift have been fitted to better stress the periodic behavior
the signals are subject to. b) Allan deviations of 𝛥𝑎(−) (red circles) and

[︀
𝛥𝑎(+) −𝛥𝑎(−)]︀ /2 (blue

diamonds).

1 Throughout this Chapter, −𝛥𝜑(−) is plotted for the downward direction of momentum transfer in order to
yield a positive value 𝑔 > 0.

2 The 𝑘-reversal method does not allow to cancel shifts induced by magnetic field gradients (see Section 5.2).
3 Based on the linear scaling of the two-photon light shift with the Rabi frequency, utilizing a measurement

protocol using a linear combination of a data point taken at full Rabi frequency 𝛺eff and a point at half
frequency 𝛺eff/2 allows to extrapolate the shift to zero at the cost of a

√
10 larger instability [127].
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beam powers. Calculating their half difference signal allows to reject these disturbances. This is
emphasized in Figure 4.19 b), where the Allan deviations of 𝑘(−)-signal and the half difference
signal are plotted. In this example, short-term fluctuations as well as slower drifts are suppressed
by a factor of 2 or more on average and long-term drifts over the whole data set are rejected by a
factor of ≈ 3. Specifically when using potassium, which typically is subject to larger systematic
shifts than, e.g. rubidium (see Section 5.2), the 𝑘-reversal method is of great value. For example,
due to its smaller hyperfine energy splitting, 39K is subject to a second-order Zeeman effect that
is larger by a factor of 15 as compared to rubidium.

4.4.3 Data analysis
The leading order phase shift of a Mach-Zehnder interferometer as depicted in Figure 4.18 is
(Equation (2.23))

𝛥𝜑 = (𝑔 − 𝛼

𝑘eff
) · 𝑘eff · 𝑇 2

under the consideration of a constant frequency change rate 𝛼 of the Raman laser difference
frequency as shown in Section 2.1. Here, linearly changing the Raman difference frequency gives
rise to an effective acceleration of the Raman wavefronts (Equation (2.22))

𝑎 ≡ 𝛼/𝑘eff

and thus allows to null the gravitationally induced phase shift for 𝛼 (𝑔)/𝑘eff = 𝛼𝐷/𝑘eff = 𝑔. Vice
versa, at this chirp rate 𝛼 (𝑔) the interferometer phase is independent of the pulse separation
time 𝑇 . By carefully changing 𝛼, the interferometer phase can be carefully controlled and typical
fringe patterns can be observed.
Figure 4.21 shows a typical determination of the local gravitational acceleration 𝑔 under the use
of the 𝑘-reversal measurement protocol. Typical fringes are acquired using the experimental
sequence described above using no additional state preparation. Operating the interferometer for
pulse separation times 𝑇 = 18, 20, 22 ms for the upward and downward direction of momentum
transfer, two central fringe positions for effective accelerations 𝑎(±)(𝑔) of the Raman wavefronts
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Figure 4.20: Allan deviation of a potassium long-term measurement of local gravitational accelera-
tion.
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Figure 4.21: Determination of gravitational acceleration with potassium. Typical fringe signals and
sinusoidal fit functions are plotted in dependence of the effective Raman wavefront acceleration for
pulse separation times 𝑇 = 18 ms (black squares and solid black line), 𝑇 = 20 ms (red circles and
dashed red line), and 𝑇 = 22 ms (blue diamonds and dotted blue line) for upward (+) and downward
(−) direction of momentum transfer. The central fringe positions a(±)(g) (dashed vertical lines)
are shifted symmetrically around 𝑔 = [𝑎(+)(𝑔) − 𝑎(−)(𝑔)]/2 (solid vertical line). The data sets are
corrected for slow linear drifts and offsets.

manifest for which the interferometer phase is independent of the pulse separation time. These
accelerations are shifted symmetrically around the local gravitational acceleration 𝑔 including
bias contributions that are dependent on the sign of 𝑘eff. The systematic shift moving 𝑎(±)(𝑔)
away from 𝑔 can mainly be attributed to the second-order Zeeman shift1. After identification
of the central fringe positions, these accelerations are continuously monitored by tuning the
effective acceleration 𝛼/𝑘eff across 𝑎(±)(𝑔) in 10 steps for both signs of 𝑘eff in alternating order
at fixed pulse separation time 𝑇 = 22 ms. Subsequently, the resulting phases 𝛥𝜑(±) are used
to calculate the half difference signal yielding the gravitational acceleration 𝑔. In Figure 4.20,
the Allan deviation of the resulting time series is computed. After 𝜏 = 4096 s integration, a
minimum instability of 𝜎𝑎 = 3 × 10−6 m/s2 is achieved. Taking the systematics assessment in
Section 5.2 into account, it can be seen that the systematic uncertainty of this measurement
lies well below the achieved statistical resolution. Averaging over the time series, the local
gravitational acceleration 𝑔 = 9.81260 ± 3.0 × 10−6 m/s2 is calculated.

1 A more detailed assessment of systematics shifts in the context of the performed dual species measurement is
described in Section 5.2.
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4.5 Discussion
In this Section, recent data inferring improvements of the short-term stability by more than
one order of magnitude is shown. Finally, an overview on fundamental challenges, giving rise to
technical consequences for a matter wave interferometer based on potassium, is provided.

Recent improvements
An increase of the short-term stability of the potassium interferometer by about one order
of magnitude were recently achieved. Two changes mainly contributed to this improvement.
Replacing the voltage-controlled oscillator generating the mixing frequency of the overall Raman
detuning 𝛥 ≈ 2𝜋 · 3.3 GHz (see Section 3.2.3) with a frequency-doubled synthesizer oscillating at
2𝜋·1.7 GHz increased the frequency stability of the Raman master laser. Previously, the frequency
instability induced by the voltage-controlled oscillator was found to have a disadvantageous
effect on the slave laser phase lock. Figure 4.22 shows a comparison of the 𝜋/2-pulse beam
splitting instability 𝜎𝑃 before and after replacing the voltage-controlled oscillator and yields
an improvement by a factor of > 3. Furthermore, the use of a velocity selection sequence (see
Section 4.3.3) significantly increased the maximum achievable contrast, thus reducing the influence
of noise caused by spontaneous emission and by the detection. With the described improvements,
it was possible to obtain inertial-sensitive fringes (Figure 4.23) with pulse separation times
𝑇 = 25 ms with a contrast 𝐶 ≈ 6 %, and even 𝑇 = 50 ms with a contrast 𝐶 ≈ 2 %. This data
constitutes an improvement over the data shown above of about one order of magnitude and
gives rise to very promising extrapolations for future tests of the universality of free fall (see
Chapter 6).
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Figure 4.22: Allan deviations of the Raman beam splitting stability before (red circles and red
dashed line) and after (black squares and solid black line) replacing the voltage-controlled oscillator
generating the mixing frequency realizing the Raman detuning 𝛥 ≈ 2𝜋 · 3.3 GHz. The data is
obtained by acquiring a series of 𝜋/2-pulses. An improvement by a factor of ≈ 3 is achieved. For
comparison the detection stability is plotted (blue diamonds and dotted blue line).
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Figure 4.23: Inertial-sensitive potassium fringes with pulse separation times 𝑇 = 25 ms, 𝐶 ≈ 6 %,
and 𝑇 = 50 ms, 𝐶 ≈ 2 %. The offset of the data obtained at 𝑇 = 50 ms is adjusted.

Fundamental potassium challenges
The choice of potassium as a test mass in a matter wave interferometer is mainly driven by
the application in a dual species UFF test in combination with rubidium. On the one hand,
potassium benefits strongly from previously demonstrated applications of rubidium-potassium
mixtures, the proximity of its D2 line to the one of rubidium, and the good mass ratio. On the
other hand, however, operating a matter wave interferometer with potassium imposes various
technical challenges, that find their origin in the fundamental properties of potassium:

1. Ensemble expansion
Potassium does not provide the closed transitions essential for efficient free space cooling.
The achievable temperatures with straightforward approaches are limited to the 20 µK
regime [119]. Even more sophisticated schemes yield temperatures that lie a factor of 2-3
above typical sub-Doppler temperatures accessible with rubidium [129]. In combination
with its its lighter mass, potassium is subject substantially higher expansion rates even in
the case of lowest free space cooling temperatures (see Section 4.3.4).

2. Fluorescence detection
Due to the narrow excited state hyperfine splitting, fluorescence detection of potassium is
subject to increased losses into the dark |𝐹 = 1⟩ state. Besides the signal-to-noise ratio
suffering from this fact, as shown in Section 4.2, detection frequency noise leads to errors
in the normalized signal. As the excited state splitting is smaller than for 39K, these issues
are even more significant when using 41K. Furthermore, after free fall on the order of a few
hundred milliseconds, the low densities make absorption imaging practically impossible
without further cooling.

3. Systematic effects
With its low hyperfine splitting, 39K is inherently subject to a second-order Zeeman shift
that is about a factor of 15 larger than the one for rubidium (see Equation (5.2)). Without
matching the effective wave vectors 𝑘eff,K and 𝑘eff,Rb, the ensembles propagate on different
trajectories mainly due to the factor of ≈ 2 difference in mass. Magnetic field gradients that
impose phase shifts cannot be compensated for by the 𝑘-reversal method and require precise
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analysis of the magnetic field. The analysis in Section 4.3.2 showed that for sufficiently large
detunings, the one-photon light shift induced by the Raman lasers cannot be compensated
for in the case of potassium. While the 𝑘-reversal scheme (see Section 4.4.2) allows to reject
any constant AC-Stark shifts, high frequency Raman laser power fluctuations will not be
canceled and increase the technical noise level of the interferometer (see sec:acstarkK).

The described challenges lead to technical consequences, such as the higher potassium Raman
laser power (≈ 100 mW per frequency) as compared to rubidium, in order to cope with the higher
temperatures and get a reasonable excitation probability. Moreover, in the case of rubidium, the
influence of AC-Stark shifts can be strongly reduced by setting the correct intensity ratio of the
two Raman laser frequencies. Next to reducing the constant bias, this also reduces the effect of
short-term fluctuations of the laser power. As highlighted in Chapter 6, ultimately the use of a
common optical dipole trap will ease up the issues related to the expansion of potassium. At the
same time, such a trap will help to constrain various systematic effects.
The demonstration of the first potassium gravimeter yielded 𝑔 = 9.81260 ± 3.0 × 10−6 m/s2.
While this performance is yet far away from state-of-the-art gravimeters based on matter wave
interferometry with rubidium and cesium, the results presented in this Chapter form a solid
foundation for the first quantum test of the universality of free fall using two species as described
in the following Chapter.





CHAPTER 5
Testing the Universality of Free Fall with rubidium and potassium

In this Chapter, the first quantum test of the universality of free fall using two species, rubidium
and potassium [51], is described in detail. In Section 5.1, the experimental methods are described
using the tools explained in Chapter 4. Further on, Section 5.1.1 explains the data analysis. A
thorough review on the systematic effects affecting the measurement is provided in Section 5.2,
and the Chapter closes with a short discussion of the results in Section 5.3.

5.1 Experimental methods
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Fig. 5.1: Space-time diagram of a dual-species
Mach-Zehnder matter wave interferometer
in a constant gravitational field for the down-
ward (thick lines) and upward (thin lines) direc-
tion of momentum transfer. Stimulated Raman
transitions at times 0, 𝑇 , and 2𝑇 couple the
states |𝐹𝑖 = 1, 𝑝⟩ and |𝐹𝑖 = 2, 𝑝± ~ 𝑘eff,i⟩, where
𝑖 stands for Rb (blue lines) or K (red lines). The
velocity change induced by the Raman pulses
is not to scale with respect to the gravitational
acceleration.

Performing a dual species measurement implies cer-
tain constraints on the experimental sequence, as
different requirements of the two test species have
to be fulfilled. Compared to rubidium, the opera-
tion of a potassium matter wave interferometer is
more demanding, mostly due to the lighter mass,
and higher temperatures that can be achieved with
free space cooling. Moreover, a typically lower
potassium atom number makes an optimization of
the apparatus for better potassium loading rates
and cooling necessary in order to match the perfor-
mance as compared to rubidium. Hence, in contrast
to a single species interferometer the compatibil-
ity of laser cooling methods has to be assured and
trade-offs have to be accepted concerning timing of
the sequence, e.g. regarding switching of magnetic
fields, the duration of a cooling phase, or optical
pumping.
The experimental sequence for testing the univer-
sality of free fall with rubidium and potassium is
composed as follows. Within a loading time of 1 s,
8 × 108 atoms of 87Rb and 3 × 107 atoms of 39K are
collected in the 3D MOT. Afterwards, the ensem-
bles are cooled down to sub-Doppler temperatures.
For potassium, this is accomplished utilizing the
techniques described in Section 4.1, and optimized beam balancing in favor of potassium cooling.
For rubidium, standard methods are employed [62, 63]. In comparison to the optimum rubidium

63
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cooling parameters [90], the timing of the rubidium cooling is adapted in favor of the potassium
sequence. The sub-Doppler cooling phase yields temperatures 𝑇Rb = 27 µK and 𝑇K = 32 µK
after a duration of 15 ms, and is followed by a 1.5 ms long optical pumping phase. In this stage,
both the rubidium and potassium repumping lasers are switched off to transfer all atoms into
the |𝐹𝑖 = 1⟩ manifold (throughout this Chapter, 𝑖 is Rb or K). By switching off all cooling light
fields, the atoms are subsequently released into free fall.
Stimulated Raman transitions are utilized to coherently couple the states |𝐹𝑖 = 1, 𝑝⟩ and
|𝐹𝑖 = 2, 𝑝± ~ 𝑘eff,i⟩, where 𝑚𝐹,𝑖 = 0. At a Raman detuning of 𝛥K = 3.3 GHz, the typical
𝜋-pulse width for potassium is 𝜏𝜋 = 15 µs. For rubidium, the detuning 𝛥Rb = 1.6 GHz, and
an identical pulse width is chosen. After a free fall time of 𝑡TOF = 43 ms (see Section 4.3.3), a
Mach-Zehnder interferometry sequence (see Section 4.4) is driven as indicated in Figure 5.1
with a common pulse separation time 𝑇 while applying a constant frequency change rate 𝛼 on
the Raman difference frequency. No additional input state preparation measures are performed.
Afterwards, normalized detection signals are obtained by state-selective fluorescence detection in
the upper detection zone (see Section 3.3 & Section 4.2). In total, an experimental cycle takes
≈ 1.6 s, mainly limited by the 3D MOT loading time.
In direct analogy to Section 4.4.2, the gravitationally induced phase shift for the two species
(Equation (2.23))

𝛥𝜑𝑖 = (𝑔𝑖 − 𝛼𝑖

𝑘eff,i
) · 𝑘eff,i · 𝑇 2

is determined by identifying the central fringe positions 𝑎(±)
𝑖 (𝑔) for the upward (+) and downward

(-) direction of momentum transfer, at which the interferometer phase is independent of the
pulse separation time 𝑇 . For this purpose, the interferometers are operated at 𝑇 = 8, 15, 20 ms
and their phase is scanned around 𝑎

(±)
𝑖 (𝑔) in Figure 5.21. The central fringe determination is

performed simultaneously for rubidium and potassium in order to account for any common
biases or inter-species systematic contributions, such as the light shift that is imposed by the
Raman laser light of one species to the other. Systematic bias contributions (see Section 5.2)
independent of the direction of momentum transfer shift the positions 𝑎(±)

𝑖 (𝑔) symmetrically
around the unshifted position. Moreover, in the case of potassium, bias contributions, that are
dependent of the pulse separation time 𝑇 , for example caused by the second-order Zeeman effect
and the AC-Stark shift, can introduce an effective shift2 of the acceleration 𝑎

(±)
𝑖 (𝑔). However,

as the shifts do not depend on the sign of 𝑘eff, they are suppressed by the 𝑘-reversal scheme
regardless if they can be analyzed in detail, as long as a central fringe position 𝑎

(±)
𝑖 (𝑔) can be

identified symmetrically around the unshifted position.

5.1.1 Data analysis

For testing the universality of free fall, the central fringe positions 𝑎
(±)
𝑖 (𝑔) are monitored

continuously over ≈ 4 h. For this purpose, the effective acceleration of the Raman wavefronts

1 Throughout this Chapter, −𝛥𝜑
(−)
𝑖 is plotted for the downward direction of momentum transfer in order to

yield a positive value 𝑔𝑖 > 0.
2 Differential bias contributions in dependence of the pulse separation time 𝑇 can shift fringe minima out of

phase at the “real” position 𝑎
(±)
𝑖 (𝑔) and cause the signals to rephase at an effective larger shift.
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Figure 5.2: Determination of the differential gravitational acceleration of rubidium and potassium.
Typical fringe signals and sinusoidal fit functions are plotted in dependence of the effective Raman
wavefront acceleration for pulse separation times 𝑇 = 8 ms (black squares and solid black line),
𝑇 = 15 ms (red circles and dashed red line), and 𝑇 = 20 ms (blue diamonds and dotted blue line) for
upward (+) and downward (−) direction of momentum transfer. The central fringe positions a(±)

i (g)
(dashed vertical lines), where 𝑖 is Rb or K, are shifted symmetrically around 𝑔𝑖 = [𝑎(+)

𝑖 (𝑔) −𝑎
(−)
𝑖 (𝑔)]/2

(solid vertical line). The data sets are corrected for slow linear drifts and offsets.

𝛼
(±)
𝑖 /𝑘eff,i is tuned around 𝑎(±)

𝑖 (𝑔) in 10 steps per direction of momentum transfer1 simultaneously
for rubidium and potassium with a pulse separation time of 𝑇 = 20 ms. Accordingly, the
acquisition of 𝑔𝑖 = [𝑎(+)

𝑖 (𝑔) − 𝑎
(−)
𝑖 (𝑔)]/2 takes 32 s in total and yields one data point for the

Eötvös ratio (Equation (1.2)). The statistical error of the Eötvös ratio measurement, and of
the single species interferometers is analyzed in the Allan deviation in Figure 5.3. After 4096 s of
integration, the statistical uncertainty of the Eötvös ratio determination is 𝜎𝜂 = 5.4×10−7. The
contrast of the rubidium interferometer suffers from the matched pulse width, which is optimized
for potassium. Taking into account the performance of the single species measurements it can be
seen that the statistical uncertainty of the potassium interferometer is dominating the integration
of the Eötvös ratio signal. The rubidium interferometer, although affected by a drift caused by
the detection, is about a factor 5 more stable than the potassium measurement. The contrast of
the potassium interferometer is mainly limited by the high ensemble temperature, as no state
preparation methods are applied. The obtained fringe oscillations are furthermore affected by
non-inertial technical noise2, as fluctuations of the Raman laser power and instabilities of the
master and slave laser phase locks cause excitation variations of the beam splitting process
(Section 4.5). Accordingly, as the dominant noise source affecting the rubidium and potassium
measurement, no common mode suppression [49, 139, 140] can be observed.

1 A data acquisition at the mid-fringe position (see Section 2.1.2) was inhibited by the limited stability of the
measurement contrast.

2 Phase noise induced by the AC-Stark shift due to Raman power fluctuations is only expected to affect the
measurement at a single shot resolution on a 10 parts per billion level (see Section 4.3.2).
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Figure 5.3: Allan deviation 𝜎𝜂 of the Eötvös ratio 𝜂Rb,K (blue diamonds) and its asymptotic
behavior (dashed blue line) in dependence on the integration time 𝜏 . After 4096 s of integration, the
statistical uncertainty of the Eötvös ratio is 𝜎𝜂 = 5.4 × 10−7. The measurement is solely limited by
the stability of the potassium signal as can be seen from the Allan deviations of the rubidium signal
𝑔Rb (black squares) and the potassium signal 𝑔K (red circles), which are normalized to their mean
acceleration.

5.2 Analysis of systematic effects
Before extracting a result for the Eötvös ratio 𝜂Rb,K, a variety of bias contributions 𝛥𝜂 and
their related uncertainties 𝛿𝜂 affecting the determination of the Eötvös ratio have to be taken
into account. Given the phase shifts 𝜑𝑖, the Eötvös ratio (Equation (1.2)) can be written as

𝜂Rb,K = 2 𝑘eff,K 𝜑Rb − 𝑘eff,Rb 𝜑K
𝑘eff,K 𝜑Rb + 𝑘eff,Rb 𝜑K

= 2
𝑘eff,K
𝑘eff,Rb

𝜑Rb − 𝜑K
𝑘eff,K
𝑘eff,Rb

𝜑Rb + 𝜑K
. (5.1)

Accordingly, knowledge of differential phase biases and uncertainties due to systematic effects can
be expressed in terms of the Eötvös ratio. In Sections 5.2.1 − 5.2.6, the dominant perturbations
influencing the measurement are discussed with respect to their origin, and analyzed quantitatively
using the experimental parameters listed in Table C.1. The effects are treated to the lowest order
unless stated otherwise.

5.2.1 One-photon light shift
The AC-Stark shift can be suppressed to a level with no relevance for the presented test
of the universality of free fall by utilizing the 𝑘-reversal scheme. As choosing an adequate
power ratio of the two Raman frequencies allows to null the one-photon AC-Stark shift of
rubidium, a calculation according to Section 4.3.2 yields a current bias level of ≈ 6.23 × 10−12 𝑔.
Furthermore, the inter-species AC-Stark shifts imposed by the Raman beam splitting light
field of one species onto the other one are per se suppressed by 3 orders of magnitude since
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they are subject to a detuning in the terahertz regime corresponding to the difference in
wavelength 𝛥𝜆 ≈ (780 − 767) nm, and the leading contribution affecting an Eötvös ratio
measurement remains the light shift perturbing the potassium interferometer. A calculation
following Section 4.3.2 allows to infer a suppression oft he AC-Stark bias by 4 orders of magnitude
to a level of ≈ 1.35 × 10−10 𝑔, limited by a linear power drift examined in a long-term power
measurement. For example, acquiring single data points for the two directions of momentum
transfer in alternating order (𝑘(+) − 𝑘(−) − 𝑘(+) . . .) instead of switching the sign of 𝑘eff after
10 shots (10 × 𝑘(+) − 10 × 𝑘(−) − 10 × 𝑘(+) . . .) reduces this limit by one order of magnitude.
Furthermore, a slightly more complex scheme (𝑘(+) − 𝑘(−) − 𝑘(−) − 𝑘(+) − 𝑘(+) . . .) allows to fully
suppress linear drifts and constrains residual biases to higher order contributions.

5.2.2 Zeeman effect
As both interferometers are exclusively operated in states with 𝑚𝐹,𝑖 = 0, the linear Zeeman
shift vanishes and thus imposes no phase contribution onto the Eötvös ratio measurement. The
second-order Zeeman shift (“clock shift”) between the hyperfine ground state 𝑚𝐹 = 0 states in
a small magnetic field 𝐵 [141]

𝛥𝜔clock = (𝑔𝐽 − 𝑔𝐼)2 𝜇2
𝐵

2~2 𝜔12
𝐵2 , (5.2)

with the Landé 𝑔-factors 𝑔𝐽 and 𝑔𝐼 , and hyperfine transition frequency 𝜔12, however, induces
a frequency shift of the unperturbed hyperfine transitions of potassium and rubidium. When
analyzing the residual bias for the Eötvös ratio determination, a distinct delineation between
spatial and temporal changes of the magnetic field has to be made. Following the sensitivity
formalism (see 2.1), any shifts induced by temporal changes 𝐵 (𝑡) at the center of mass position
in the magnetic field that do not cancel due to symmetry over the duration of the interferometer,
cause an acceleration bias. This bias, which lies on the order of 1 × 10−4 𝑔 for potassium in
the present experiment, is strongly suppressed in the 𝑘-reversal scheme (see Section 4.4.2) as it
imposes a phase shift independent of the direction of momentum transfer. In contrast, spatial
changes of the magnetic field will lead to a frequency shift dependent on the specific trajectory of
the center of mass (Figure 5.1), and thus the experienced recoil due to the interaction with the
beam splitter. As a result, after applying the 𝑘-reversal scheme, a non vanishing dependency on
𝑣rec and the magnetic field susceptibility remains, which can be analyzed to first order using the
local magnetic field gradient 𝜕𝐵 (𝑡)/𝜕𝑧. The frequency shift induced by the splitting of the two
interferometer arms is

𝛥𝜔rec(±), 𝑖 (𝑡) ≡ ±
𝛥𝜔clock, 𝑖

𝐵2 · 𝜕𝐵 (𝑡)
𝜕𝑧

·𝐵 (𝑡) · 𝑣rec, 𝑖 𝑡 , (5.3)

with the clock shift 𝛥𝜔clock, 𝑖 (Equation (5.2)) and recoil velocity 𝑣rec, 𝑖 (Equation (2.12)) for the
upward and downward direction of momentum transfer. Computing the convolution with the
sensitivity function

𝛥𝛷rec
𝑖 ≡

∞̂

−∞

𝑔𝑠,MZ (𝑡) 𝛥𝜔rec, 𝑖 (𝑡) d𝑡 (5.4)

with the sensitivity function 𝑔𝑠,MZ (𝑡) (Equation (2.24)), allows to determine the phase shift
imposed onto species 𝑖 by a residual magnetic field gradient.
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Figure 5.4 a) shows the magnetic field gradient, which was determined by means of microwave spec-
troscopy of the |𝐹 = 1,𝑚𝐹 = 0⟩ → |𝐹 = 2,𝑚𝐹 = 0⟩ and |𝐹 = 1,𝑚𝐹 = −1⟩ → |𝐹 = 2,𝑚𝐹 = −1⟩
transitions in rubidium. In combination with the measured field 𝐵 (𝑡) (Figure 5.4 b)), using
Equation (5.4) allows to calculate the differential bias acceleration affecting the measurement of
the Eötvös ratio. With 𝛥𝜔clock,Rb/𝐵

2 = 2𝜋 · 575.15 Hz/G2 for rubidium and 𝛥𝜔clock,K/𝐵
2 =

2𝜋 · 8.526 kHz/G2 for potassium, the differential acceleration is 𝛥𝜂rec = (−5.8±2.6)×10−8, with
the error inferred from the magnetic gradient fit function using uncertainty propagation. The
uncertainty can be further reduced by surveying the magnetic gradient with higher resolution.
Furthermore, the switching of 𝐵 (𝑡) was recently improved, yielding a steady state after a shorter
time.

5.2.3 Effective wave vector
Precise knowledge of 𝑘eff,i is necessary to achieve high accuracy in the determination of 𝑔. Both,
uncertainties of 𝑘eff,i, e.g. due to limited accuracy of a spectroscopy lock, and changes of the
projection 𝑘⃗eff · 𝑔⃗, such as misalignment of the retroreflected beam splitting light field, or wavefront
aberrations, have to be taken into account for the error estimation.

Spectroscopy uncertainty
The 𝐷2 lines of rubidium and potassium are determined to relative uncertainties of 1×10−11 [142],
and 2 × 10−10 [122], respectively. Assuming uncertainties of the potassium and rubidium
spectroscopies 𝛥𝜔𝑖, the uncertainty in the Eötvös ratio to leading order in 𝛥𝜔𝑖 is

𝛿𝜂spec =

√︃(︂
𝛥𝜔Rb

2𝜔𝐷2,Rb

)︂2
+
(︂

𝛥𝜔K
2𝜔𝐷2,K

)︂2
, (5.5)

with the 𝐷2 line transition frequency 𝑓𝐷2,𝑖. With the assumption 𝛥𝜔Rb = 𝛥𝜔K = 700 kHz, the
uncertainty of the Eötvös ratio becomes 𝛿𝜂spec = 1.3 × 10−9.
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Figure 5.4: a) Purely spatial magnetic field variation in dependence of the falling distance starting
from the 3D MOT position (black squares) and fitted function 𝐵 (𝑧) ∝ 𝑎/(𝑧+ 𝑏)3 (solid black line). In
a normal experimental sequence, the gradient is masked by stronger temporal variations. b) Switching
behavior of the magnetic field coils (black squares) and fitted function 𝐵 (𝑡) ∝ 𝑎 · exp[−𝑏 𝑡] (solid
black line) starting at the time of the first interferometer pulse 𝑡TOF = 43 ms.
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Vertical alignment
Alignment errors of the Raman beam splitting light fields change the projection 𝑘⃗eff · 𝑔⃗ and thus
the gravitationally induced phase shift. To quadratic order, the relative phase shift caused by a
small angle misalignment 𝛿𝛼 of 𝑘⃗eff away from the vertical axis is

𝛥𝜑al
𝑖

𝜑𝑖
= 𝛿𝛼2

𝑖

2 . (5.6)

In the present experiment, the vertical alignment uncertainty 𝛿𝛼 = 𝛿𝛼Rb = 𝛿𝛼K = 0.03 mrad is
common to both the rubidium and potassium Raman light fields. The resulting uncertainty of
the Eötvös ratio measurement is thus strongly suppressed:

𝛿𝜂al = 𝛿𝛼2

2

(︂
1 −

𝑘eff,K
𝑘eff,Rb

)︂
. (5.7)

The uncertainty of the Eötvös ratio yields 𝛿𝜂al = 7.9 × 10−12 and is negligible for the given
experimental parameters.

Wavefront aberration

𝑅in
𝑑

𝑅re

𝑑

𝛥𝑧in
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𝑔

Fig. 5.5: Influence of wavefront curvatures 𝑅in
of the incident wave and 𝑅re of the retroreflected
wave. An atom at a radial distance 𝑑 from
the Raman beam center experiences a reduced
effective wave vector 𝑘eff due to its offset 𝛥𝑧in −
𝛥𝑧re, making transverse expansion a cause of a
bias acceleration.

Treating the two-photon light field as a plane wave
is not sufficient when analyzing bias contributions
in an interferometer. Given the finite size of an
atomic ensemble in an interferometer, and spatial
variations of the Raman light field, e.g. due to
wavefront curvature, changes in the projection 𝑘⃗eff ·
𝑔⃗ as indicated in Figure 5.5 occur. This in turn
can cause different average effective wave vectors
𝑘eff throughout the interferometer and result in a
bias acceleration. Due to the retroreflected setup,
wavefront imperfections are strongly suppressed.
For example, the wavefront curvature 𝑅in of the
incident wave is greatly compensated for by roughly
the opposite curvature 𝑅re of the retroreflected
beam1, yielding a much larger effective curvature
(Figure 5.5). In a Mach-Zehnder interferometer,
the acceleration bias for a small splitting between
the interferometer arms can be expressed as [59, 127]

𝛥𝜑wf
𝑖 ≈ 𝑘eff,i

[︂
(𝜎𝑎(𝑡TOF))2

(︂
1

𝑅in(𝑡TOF) − 1
𝑅re(𝑡TOF)

)︂
− 2 (𝜎𝑎(𝑡TOF + 𝑇 ))2

(︂
1

𝑅in(𝑡TOF + 𝑇 ) − 1
𝑅re(𝑡TOF + 𝑇 )

)︂
+ (𝜎𝑎(𝑡TOF + 2𝑇 ))2

(︂
1

𝑅in(𝑡TOF + 2𝑇 ) − 1
𝑅re(𝑡TOF + 2𝑇 )

)︂]︂
.

(5.8)

1 The retroreflected beam has a different curvature due to the longer distance it is traveling before interacting
with the atoms.
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Here, the time dependence of 𝑅in (𝑡) and 𝑅re (𝑡), which are calculated using ABCD matrix
analysis, takes account for the changing curvature due to beam divergence as experienced by the
atoms in motion along the beam over the distance of ≈ 1.65 m between the Raman collimator
and the retroreflector. Furthermore, 𝜎𝑎 (𝑡) is the cloud radius (Equation (4.21)).
In the performed Eötvös ratio measurement, the beam splitting light field is collimated
using a shearing interferometer [CVI Laser Optics 09SPM003]. When conservatively assuming a
wavefront curvature of 𝑅 = 300 m at the Raman collimator, the resulting differential acceleration
uncertainty can be calculated using Equation (5.8) and is 𝛿𝜂wf = 1.2 × 10−8.

5.2.4 Coriolis force

𝛺⊕

𝑔
𝑘eff 𝑣0,EW

𝛺eff

Fig. 5.6: Influence of the Coriolis force
on a Mach-Zehnder interferometer. An
area giving rise to a Sagnac phase shift,
e.g. due to the effective Earth’s rotation
𝛺eff = 𝛺⊕·cos(𝜃) where 𝜃 is the instrument
location’s latitude, is enclosed as a cause of
a transverse velocity 𝑣0,EW ⊥ 𝑘⃗eff. Image
modified from Ref. [143].

Any velocity component perpendicular to the direction
of momentum transfer results in an area 𝐴 enclosed by
the trajectories of an interferometer. Due to the Sagnac
effect [144–146], a corresponding phase shift

𝛥𝜑S = 2𝑚
~
𝛺⃗ · 𝐴⃗ (5.9)

sensitive to rotations 𝛺⃗ around the normal 𝐴⃗ is induced.
While the transverse spread of an atomic ensemble due to
its temperature is symmetric and thus nulls the Sagnac
phase, a center of mass velocity results in a bias ac-
celeration due to the Coriolis force as the laboratory
inertial frame rotates around the free falling atoms. As
indicated in Figure 5.6, a transverse velocity component
𝑣0,EW on the East-West axis, which can for example be
induced by the beam splitting lasers rotating around the
free falling atoms [146] or light pressure in the cooling
phase, gives rise to a non-vanishing phase shift

𝛥𝜑C = 2𝛺eff · (𝑣0,EW × 𝑘⃗eff)𝑇 2 . (5.10)

Here, 𝛺eff = 𝛺⊕ · cos(𝜃) is the effective Earth rotation
rate at the instrument location’s latitude 𝜃.
For a measurement of the Eötvös ratio, the acceleration bias is strongly suppressed and scales
only with the differential center of mass velocity 𝛿𝑣0,EW:

𝛿𝜂C ≈
2𝛺eff 𝛿𝑣0,EW

𝑔
. (5.11)

With an effective rotation rate of Hannover1 𝛺eff = 4.45 × 10−5 rad/s and an assumed differ-
ential velocity uncertainty 𝛿𝑣0,EW = 1 mm/s, the uncertainty due to the Coriolis force is
𝛿𝜂C = 9.1 × 10−9.

1 The calculation of 𝛺eff is based on a latitude 𝜃 = 52.376 ∘ and the length of a sidereal day 86 164.09 s.
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5.2.5 Two-photon light shift

|𝑖,𝑝 − ~𝑘1⟩ |𝑖,𝑝 + ~𝑘1⟩ |𝑖,𝑝 + ~(𝑘eff + 𝑘1)⟩
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Fig. 5.7: Two-photon light shift on the |𝑔, 𝑝⟩ →
|𝑒, 𝑝+ ~ 𝑘eff⟩ transition induced by off-resonant cou-
pling of the second counterpropagating Raman beam
pair 𝜔re

1 and 𝜔in
1 . In addition, off-resonant coupling of

the copropagating beams has to be considered with
the polarizations used in this work. Modified from
Ref. [147].

Besides the influence of the one-photon AC-
Stark shift (see Section 4.3.2 & Section 5.2.1),
the presence of a second, off-resonant two-
photon light field as in the case of the retrore-
flected setup in this thesis gives rise to a per-
turbation of the Raman transition frequency
and thus a related bias acceleration. Fig-
ure 5.7 depicts the case of a Doppler-sensitive
two-photon transition resonantly coupling the
states |𝑔, 𝑝⟩ → |𝑒, 𝑝+ ~ 𝑘eff⟩. While driving
the transition, the counterpropagating pair
𝜔re

1 and 𝜔in
1 off-resonantly couples the sec-

ond Doppler-sensitive |𝑔, 𝑝⟩ → |𝑒, 𝑝− ~ 𝑘eff⟩
transition with a detuning given by twice
the Doppler shift 𝜔𝐷 (Equation (2.14)).
Furthermore, the states |𝑒, 𝑝+ ~ 𝑘eff⟩ →
|𝑔, 𝑝+ 2 ~ 𝑘eff⟩ at a detuning given by the
Doppler shift and the recoil frequency 𝜔rec
(Equation (2.13)) are coupled. As derived
in Ref. [147], the perturbation 𝛿𝜔±TP due to
the energy shifts 𝛿𝐸𝑔 and 𝛿𝐸𝑒 caused by the
off-resonant counterpropagating Raman beam
pair coupling |𝑔, 𝑝⟩ → |𝑒, 𝑝± ~ 𝑘eff⟩

𝛿𝜔±TP = 𝛺2
eff

±8𝜔𝐷
+ 𝛺2

eff
4 (±2𝜔𝐷 + 4𝜔rec)

, (5.12)

with the effective Rabi frequency 𝛺eff. As the polarizations in this thesis in addition allow
coupling of the copropagating transitions |𝑔, 𝑝⟩ → |𝑒, 𝑝⟩ & |𝑔, 𝑝± ~ 𝑘eff⟩ → |𝑒, 𝑝± ~ 𝑘eff⟩ (see
Section 3.3 & Section 2.1), an additional shift [147]

𝛿𝜔TP,co ≈
2𝛺2

eff
4 (±𝜔𝐷 + 𝜔rec)

(5.13)

is imposed1. For pulses short enough to assume a constant two-photon light shift over the
duration of the pulse, the phase shift for a single species 𝑖 is [147]

𝛥𝜑TP
𝑖 =

(︃
𝛿𝜔±TP

1,𝑖 + 𝛿𝜔TP,co
1,𝑖

𝛺eff,1,𝑖
−
𝛿𝜔±TP

3,𝑖 + 𝛿𝜔TP,co
3,𝑖

𝛺eff,3,𝑖

)︃
, (5.14)

with the subscript numbers (1,3) indicating the first and third beam splitting pulse. With the
considerations above, the bias contribution on the Eötvös ratio due to the two-photon light
shift can be determined to 𝛥𝜂TP = 4.1 × 10−9 with an assumed uncertainty of 2%.

1 Here, the assumption is made that the copropagating transition is driven at a Rabi frequency 2𝛺eff due to the
retroreflection setup.
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5.2.6 Gravity gradient
Going beyond the phase shift from Equation (2.21) introduces higher order contributions, which
depend on the gravity gradient. The largest phase shift terms depending on the gradient
are caused by an initial velocity difference and a position offset. Following the full analysis
in Ref. [92], the lowest order contributions in dependence of the gradient tensor component
𝑇𝑧𝑧 = 3.1 × 10−7 s−2 are

𝛥𝜑gr,z = 𝑘eff 𝑇𝑧𝑧 𝛿𝑧 𝑇
2 (5.15)

for a vertical offset 𝛿𝑧 between two ensembles, and

𝛥𝜑gr,v = 𝑘eff 𝑇𝑧𝑧 𝛿𝑣0,𝑧 𝑇
3 , (5.16)

accounting for a (differential) velocity 𝛿𝑣0,𝑧. In the presented experiment, a vertical offset
uncertainty 𝛿𝑧 = 300 µm leads to an uncertainty of the Eötvös ratio 𝛿𝜂gr,z = 9.5 × 10−12.
Assuming an uncertainty of the differential velocity 𝛿𝑣0,𝑧 = 1 mm/s, the influence on the
measurement of the universality of free fall is 𝛿𝜂gr,v = 6.3 × 10−13. The quadratic sum yields an
uncertainty due to the gravity gradient of 𝛿𝜂gr = 9.5 × 10−12. Phase shifts depending on the
different recoil transferred in the beam splitting process do not change their sign with a change
of the direction of momentum transfer and are thus suppressed in the 𝑘-reversal scheme (see
Section 4.4.2).

5.3 Summary
The systematic bias contributions 𝛥𝜂 and their uncertainties 𝛿𝜂 derived in Sections 5.2.2 − 5.2.6
are listed in Table 5.1 and yield total contributions of 𝛥𝜂tot = −5.4×10−8 and 𝛿𝜂tot = 3.1×10−8.
Taking into account the statistical uncertainty1 𝜎𝜂 and the bias 𝛥𝜂tot, the Eötvös ratio can be
determined to 𝜂Rb,K = (0.3 ± 5.4) × 10−7.
A variety of significantly smaller systematic errors, and methods for error mitigation exist beyond
the discussion presented here [59, 92]. For example, the implementation of a tip-tilt mirror allows
to significantly reduce the influence of the Coriolis force [55, 56, 146]. As a second example,
due its linearity in the effective Rabi frequency, the two-photon light shift bias (see Section 5.2.5)

Table 5.1: Overview of systematic effects 𝛥𝜂 perturbing the Eötvös ratio determination, and their
uncertainties 𝛿𝜂. The uncertainties are treated to be uncorrelated at the level of inaccuracy.

Contribution 𝛥𝜂 𝛿𝜂

Second-order Zeeman effect −5.8 × 10−8 2.6 × 10−8

Wavefront aberration 0 1.2 × 10−8

Coriolis force 0 9.1 × 10−9

Two-photon light shift 4.1 × 10−9 8.2 × 10−11

Effective wave vector 0 1.3 × 10−9

First-order gravity gradient 0 9.5 × 10−12

Total −5.4 × 10−8 3.1 × 10−8

1 At the current level of resolution, the systematic uncertainty 𝛿𝜂tot has no relevance in the quadratic sum.
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can be reduced by changing the beam splitting laser power and computing a linear combination
extrapolating to zero bias with a reduced short-term sensitivity [127]. As explained in the outlook
in Chapter 6, techniques are available to further reduce the uncertainty of the currently limiting
bias contributions represented by the second-order Zeeman shift caused by a residual magnetic
field gradient (see Section 5.2.2), and wavefront aberration (see Section 5.2.3).





CHAPTER 6
Outlook

“Science shall never find that formula by which its necessary character could be proved.
Actually science itself might cease if we were to find the clue to the secret.”

— L. Eötvös, 1890 [30]

In the scope of this thesis, the first potassium matter wave interferometer was demonstrated,
and the universality of free fall (UFF) was tested utilizing matter wave interferometry with
two different species, rubidium and potassium, for the first time. The measurement yielded the
Eötvös ratio 𝜂Rb,K = (0.3 ± 5.4) × 10−7. Due to the comparably low contrast of the potassium
interferometer and technical noise influencing it, the measurement was limited by statistical
uncertainty. This limit lies about one order of magnitude above the total systematic uncertainty
𝛿𝜂tot = 3.1 × 10−8. In this Chapter, methods to increase the system’s performance are discussed.
Recently demonstrated noise reduction of the potassium interferometer will allow an improvement
of the Eötvös ratio measurement to a level of parts in 108 within a few hours of integration. It
is furthermore projected that the use of an optical dipole trap as a common source will constrain
systematic uncertainties to the ppb level. This thesis is closed with a look into the future of
matter wave tests of gravity. The use of large-scale apparatuses such as the “very long baseline
atom interferometry” facility, which is currently planned in Hannover, will enable tests of the
UFF at a level of a few parts in 1013. Finally, the extension of UFF tests into space bring
inaccuracies at a scale of 2 × 10−15 into reach.

6.1 Overcoming current limitations
Statistical uncertainty
The resolution of the Eötvös ratio 𝜂Rb,K of rubidium and potassium performed in this thesis
was limited by statistical uncertainty of the potassium interferometer due to both, the limited
integration time and the short-term stability; being affected by technical noise and low contrast.
Due to the leading order noise contribution not being common to the rubidium and potassium
interferometer, noise suppression [49, 139, 140] was not observable up to now. As shown
in Section 4.4, various steps toward a sensitivity enhancement have been taken. Technical
improvements have allowed to increase the Raman beam splitting stability (see Section 4.4),
thus the measurement contrast and the pulse separation time remain the most important levers
to achieve a lower short-term instability. In order to test the potential of these improvements, a
midfringe instability measurement was obtained using an inertial-sensitive interferometer with
a pulse separation 𝑇 = 25 ms with a contrast of 𝐶 = 3 %. The assumption that the potassium

75
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Figure 6.1: Allan deviation extrapolated under the assumption that the potassium interferom-
eter constitutes the leading uncertainty of the measurement, based on a demonstration midfringe
measurement obtained at a pulse separation time 𝑇 = 25 ms with a contrast of 𝐶 = 3 % (red circles
and dotted red line). The measurement is subject to a drift caused by slow variations in the signal
offset that can be compensated. For comparison, the Allan deviations for 𝑇 = 50 ms, 𝐶 = 2 %
(dashdotted blue line), and for the first dual species UFF measurement with 𝑇 = 20 ms, 𝐶 = 1 %
(black squares and dashed black line) are displayed.

interferometer constitutes the leading uncertainty of the measurement is made. Because of a
drift affecting the midfringe measurement, a data acquisition protocol repetitively scanning a
full fringe is considered1. The largest pulse separation times demonstrated so far in a potassium
single species configuration were 𝑇 = 50 ms, and yielded a contrast of 𝐶 = 2 %. As can be seen
from the Allan deviation 𝜎𝜂,ex (Figure 6.1) of an extrapolated Eötvös ratio measurement, a
short-term stability that is improved by one order of magnitude can be derived from the data
taken at 𝑇 = 25 ms. With this performance, the current statistical uncertainty 𝜎𝜂 = 5.4 × 10−7

can be achieved after ≈ 30 s of integration. Accordingly, the current systematic uncertainty
𝛿𝜂tot = 3.1 × 10−8 is in reach after ≈ 3 h of integration. For a measurement at 𝑇 = 50 ms with a
contrast of 𝐶 = 2 %, the single-shot resolution exceeds the current statistical limit, allowing for a
much faster integration toward the systematic limit.
It was shown previously, that seismic noise is the leading order noise contribution for a single
species rubidium gravimeter operated in the present apparatus [90]. The same holds true in
state-of-the-art matter wave gravimeters [148–150], however, it has been demonstrated that using
correlation with a high bandwidth classical seismometer, this noise can be corrected for [151].
In a dual species measurement a noise contribution that is common to both interferometers
allows common mode rejection [49, 139, 140]. Here, the degree of suppression is governed by how
well the interferometer scaling factors of the two species and their sensitivity functions, that is,

1 In comparison to a two-slope midfringe measurement, which requires both, good knowledge and high stability
of the measurement contrast, the full fringe scan increases the instability by a factor of

√
2.
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their pulse separation times and Rabi frequencies, are matched (see Section 2.1.3). Contrary to
an experiment employing isotopes of the same species with very similar transition wavelengths
matching the scaling factors and Rabi frequencies of two different species is subject to much
tighter constraints due to wavelength differences that typically lie on the order of terahertz or
more. For the case of rubidium and potassium, a conservative estimation promises a suppression
of vibrational noise by a factor > 100 without much technical effort [139].
Employing Bragg transitions [86, 152] as beam splitters instead of Raman transitions is an
interesting alternative to increase the sensitivity of a matter wave interferometer. Given sufficient
laser power, nth-order Bragg processes can be driven, increasing the transferred momentum
2𝑛 ~𝑘eff linearly with the diffraction order. It is worth noting that a trade-off has to be considered
when weighing a scaling factor matching against a trajectory matching, which is beneficial for
decreasing systematic effects.

Systematic uncertainty
Conservative traps as a source of ultracold ensembles with well controlled release and expansion
dynamics for matter wave interferometry are nowadays widely spread [55–58, 137, 153]. The use
of an optical dipole trap as a common source for rubidium and potassium features evaporative
cooling and the possibility to sympathetically cool one species [154, 155]. The apparatus presented
in this thesis was previously used to generate Bose-Einstein condensates in an optical dipole
trap (ODT) at a wavelength of 𝜆ODT ≈ 2 µm [102, 156]. Due to its efficient loading and the
low differential AC-Stark shift exerted on the 2𝑆1/2 → 2𝑃3/2 fine structure transitions of
rubidium [102] and potassium, the use of an ODT of this kind holds great potential as a source
for matter wave interferometry, even though the statistical resolution may be decreased due to
higher quantum projection noise as consequence of lower flux as compared to a thermal source1.
As shown above, the recent improvements will soon allow to reach the current systematic limit,
which is constrained to 𝛿𝜂tot = 3.1 × 10−8 (see Section 5.2), within reasonable integration time.
Next to the potential in improving the contrast and thus sensitivity of the measurement, the
optical dipole trap is an important tool to handle the systematic uncertainty of a dual species
measurement [51, 156], which is mainly set by the second-order Zeeman shift, caused by spatial

Table 6.1: Comparison of the current systematic uncertainties 𝛿𝜂 of the Eötvös ratio to the
improved uncertainties 𝛿𝜂adv achieved by using an optical dipole trap. The uncertainties are treated
to be uncorrelated at the level of inaccuracy.

Contribution 𝛿𝜂 𝛿𝜂adv

Second-order Zeeman effect 2.6 × 10−8 3.0 × 10−9

Wavefront aberration 1.2 × 10−8 3.0 × 10−9

Coriolis force 9.1 × 10−9 1.0 × 10−11

Two-photon light shift 8.2 × 10−11 8.2 × 10−11

Effective wave vector 1.3 × 10−9 1.3 × 10−9

First-order gravity gradient 9.5 × 10−12 1.0 × 10−13

Total 3.1 × 10−8 4.4 × 10−9

1 Based on sympathetic cooling, degenerate mixtures of 106 atoms of 87Rb and 2 × 105 atoms of 39K [155] and
104 atoms of 87Rb & 41K each [154] have been demonstrated.
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variations of the magnetic field. This shift is not suppressed by the 𝑘-reversal scheme due
to the different trajectories of the two species. Next to a better characterization of residual
gradients using an ODT source, holding in an optical trap also allows to add additional waiting
time to make sure any magnetic fields are completely switched off. Furthermore, wave front
aberrations affect the interferometer phase by variations of the effective wave vector throughout
the sequence [127]. Reducing the ensemble temperature and the related expansion by means
of evaporative cooling allows to decrease the influence of wave front distortions. By creating a
common potential that is only different to two species by the difference in their polarizability
and the gravitational sag, an optical trap allows to carefully constrain the starting parameters
of the two ensembles, such as the differential expansion and center of mass velocity, and the
center of mass colocation. It furthermore becomes possible to map the wave front by precisely
scanning the initial position of the source. Moreover, in an optical trap the magnetic field is
a free parameter allowing tuning of the scattering properties of trapped atoms via Feshbach
resonances [154, 155, 157–159]. In the case of mixtures of rubidium and potassium, addressing
these is necessary to tune the scattering length in order to allow for sympathetic cooling and to
gain full control over the miscibility.
A variety of methods to achieve a high flux source of ultracold mixtures of rubidium and
potassium are available. Using the anti-Helmholtz coil pair that generates the 3D MOT
magnetic quadrupole field, gradients up to 𝐵′ = 45 G/cm can be realized with the currently
operated power supply and water cooling system. Next to Bose-Einstein condensate generation
in a weak hybrid trap [156], this enables experimental schemes of magnetically aided forced
evaporation in an optical trap as demonstrated in [160]. Besides creating an ultracold dual
species source per se, further temperature reduction is possible by atom optical lenses, that
utilize a harmonic potential to stop the expansion of an atomic ensemble. The effectiveness of
this method in increasing the contrast of matter wave interferometers has recently been shown in
[55, 56, 58], where magnetic potentials were employed. In addition, the applicability of optical
potential for this purpose has been demonstrated [137]. For the apparatus presented in this
thesis, one option is to superimpose a focused dipole trap beam with the Raman beam on a
dichroic mirror to enable optical matter wave lensing.
Table 6.1 shows the current uncertainty budget and improved uncertainty contributions 𝛿𝜂adv

assuming the use of an optical dipole trap. The considered extrapolation is based on a temperature
of the Rb-K mixture of 10 µK. The assumed ODT parameters are a horizontal trap alignment
uncertainty of 1.5°, 3 ms trap switch-off time and an uncertainty of the trap power before release
of 0.2 % [51]. The improved total uncertainty 𝛿𝜂adv

tot = 4.4 × 10−9. Hence, by utilizing the ODT
as a source, a ppb-level test of the UFF with rubidium and potassium can be performed in the
near future.

6.2 The future of matter wave tests of gravity
Large scale apparatuses and microgravity experiments
Matter wave tests of gravity allow tests of novel effects that find their origin in quantum mechanics
and cannot be observed with classical matter [169–172]. Furthermore, it may be possible to
further investigate the nature of dark energy with matter wave interferometry [173]. In the sector
of UFF tests, numerous initiatives were started with quantum objects. Table 6.2 provides an
overview on proposed tests. The scope of these experiments can be split into the class of tests that
are ground-based, and the ones in microgravity. In attempt to set new records for matter wave
tests of the UFF, large-scale apparatuses such as 10 m-fountains are currently being operated by
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Table 6.2: Comparison of proposed matter wave tests of the UFF with respect to their type
of experiment, the choice of test masses, the maximum free evolution time 2𝑇 and the proposed
inaccuracy 𝛿𝜂tot. The experiments are categorized into ground-based and microgravity tests. Note
that for some tests no detailed systematics assessment is available.

Experiment Type Ref. Species 2𝑇 in s 𝛿𝜂tot

Palo Alto 10 m-fountain [54] 87Rb vs 85Rb 1.4 1 × 10−15

Wǔhàn 10 m-fountain [161] 6Li vs 85Rb 1.4 –
Berkeley Lattice interferometer [94] 6Li vs 7Li 10 a 1 × 10−14

Hannover Lab-based b c [51] 87Rb vs 39K 0.2 4 × 10−9

G
ro

un
d-

ba
se

d

Hannover, VLBAI 10 m-fountain [162] 87Rb vs 168/170Yb 1.4 7 × 10−13

Bordeaux, ICE Parabola flights [163] 87Rb vs 39K 2.0 5 × 10−11

CAL Space station [65] 87Rb vs 41K 4.0 1 × 10−11

𝜇
-g

ra
vi

ty

STE-QUEST Satellite mission c d [60] 87Rb vs 85Rb 10 2 × 10−15

a The proposed geometry foresees a guided interferometer that allows to achieve long wave packet separation
times.

b The experiment is presented in this thesis.
c A detailed assessment of systematic effects is available.
d Prestudies in microgravity for the STE-QUEST mission, and possible extensions to 41K are performed in the

drop tower experiments within the QUANTUS project [57, 58, 164, 165], the PRIMUS project [166, 167], and
in the sounding rocket mission MAIUS [168].

groups in Palo Alto, USA [54–56] and Wuhan, China [161]. In the ground-based sector, these
instruments promise to be among the most sensitive sensors and open up great potential for
groundbreaking developments for tests of the UFF. With this motivation, a fountain of this kind
is currently being planned in Hannover, Germany. This device will be operated with rubidium
and ytterbium to examine new frontiers in “very long baseline atom interferometry” (VLBAI).
Proposed aims are a test of the UFF at a level of a few parts in 1013 and record inaccuracy for
absolute measurements of gravitational acceleration and its derivatives in close cooperation with
geodesy. Moreover, the feasibility of novel high fidelity beam splitters, and the applicability of
non-classical states to overcome the quantum projection noise will be investigated [174–179].
Tests in microgravity benefit from the possibility of reaching very long free fall times due to
the lifted constraint of limited vacuum vessel size. More importantly, however, more abilities
to reduce systematic effects as compared to ground-based experiments are available [59, 60]
and allow to constrain systematic error budgets to the level of parts in 1015. As a trade-off,
microgravity missions suffer from typically very high technology-readiness requirements, limited
maintenance access, and, e.g. in the case of the ZARM drop tower in Bremen, from low repetition
rates1. A variety of new test mass pairs is considered, however, proposals accessing inaccuracies
of the Eötvös ratio on the order of 10−13 and below are subject to extremely tight experimental
constraints. For example, in the STE-QUEST mission, the initial position of the test species’
centers of mass must coincide on the order of 1 nm, and the differential velocity must not

1 The Einstein-elevator [180], a high-repetition, free fall simulator, which is currently being planned in Hannover,
will fill the gap.
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be larger than 0.3 nm/s, to suppress bias contributions due to the gravity gradient [59, 60].
Considering the displacement of the clouds in the preparation phase caused by the relatively
strong second-order Zeeman shift due to the required Feshbach fields, raises high demands on
the magnetic field quality in such an experiment. This highlights the importance of a careful
analysis of all systematic parameters, such as the quantum miscibility, during the search for a
test mass pair. In the STE-QUEST mission proposal, this option was not available because of
the dual use of the experiment as an atomic clock and the realted additional constraints.

Conclusion
Different tests of gravity are subject to different constraints, e.g. the available test masses. For
instance, matter wave tests rely on laser cooling and the miscibility of test species, torsion balances
underly certain constraints such as conductivity, magnetic properties [61] and a maximum density
difference of the two species [181]. Most definitely, however, pursuing new record accuracies for
measurements of the universality of free fall with a further extended set of test masses is a very
promising strategy to find the missing piece for a self-consistent “quantum gravity” framework
valid over all energy scales. There is no doubt that many of the currently followed experimental
strategies, may they be classical or based on quantum mechanics, will allow exciting insights
in the nature of gravity and its links to quantum mechanics. By opening up the door toward
matter wave tests of the UFF using different species, the results of this thesis set part of the
foundation for a number of future tests and are an important step on the road of seeking a
“theory of everything”.
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APPENDIX A
Properties of 87Rb and 39K

In Table A.1, atomic properties of 87Rb and 39K are compared. Table A.2 shows a comparison of
the stable potassium isotopes with the neighboring elements, sodium and rubidium, with respect
to the abundance and the hyperfine splitting. Figure A.1 depicts the 𝐷1 and 𝐷2 line electronic
structure of the stable potassium isotopes.

Table A.1: Atomic properties of rubidium and potassium as stated in Refs. [88, 107, 120, 122].
87Rb 39K

Atomic mass in u 86.91 38.96
Nuclear spin 3/2 3/2
𝐷2 transition frequency in THz 2𝜋 · 384.230 484 468 5 2𝜋 · 391.016 170 03
𝐷2 transition wavelength in nm 780.241 209 686 766.700 921 822
𝐷2 natural linewidth in MHz 2𝜋 · 6.067 2𝜋 · 6.035
Saturation intensity in mW/cm2 1.73 1.75
Hyperfine transition frequency 𝜔12 in MHz 2𝜋 · 6834.682 610 904 2𝜋 · 461.719 720 1
Recoil frequency 𝜔𝑟 in kHz 2𝜋 · 3.77 2𝜋 · 8.67
Recoil velocity 𝑣𝑟 in mm/s 5.8845 13.2983
Recoil temperature 𝑇𝑟 in nK 361.96 418.06

Table A.2: Comparison of alkali properties as staed in Refs. [107, 182]. The atomic mass is stated
in atomic mass units u, the nuclear magnetic moment is stated in units of the nuclear magneton 𝜇𝑁 .

Isotope Mass in u Abundance Nuclear spin Magnetic moment
in 𝜇/𝜇𝑁

Hyperfine frequency
𝜔12 in MHz

39K 38.963707 93.258 % 3/2 +0.391 461.7
40K 39.963999 0.012 % 4 −1.298 1285.8
41K 40.961825 6.730 % 3/2 +0.215 254.0
23Na 22.989767 100 % 3/2 +2.218 1771.6
85Rb 84.911794 72.17 % 5/2 +1.353 3035.7
87Rb 86.909187 27.83 % 3/2 +2.751 6834.7
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39K

42P3/2

|𝐹 ′ = 3⟩ (14.4 MHz)

|𝐹 ′ = 2⟩ (−6.7 MHz)

|𝐹 ′ = 1⟩ (−16.1 MHz)
|𝐹 ′ = 0⟩ (−19.4 MHz)

42S1/2

|𝐹 = 2⟩ (173.1 MHz)

|𝐹 = 1⟩ (−288.6 MHz)

766.701 nm

770.108 nm

𝜔0′3′ ≃ 5.5 𝛤K

𝜔12 = 2𝜋 · 461.7 MHz

42P1/2

|𝐹 ′ = 2⟩ (20.8 MHz)

|𝐹 ′ = 1⟩ (−34.7 MHz)

40K

42P3/2
(126.0 MHz)
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|𝐹 ′ = 5/2⟩ (55.2 MHz)

|𝐹 ′ = 7/2⟩ (−2.3 MHz)

|𝐹 ′ = 9/2⟩ (−31 MHz)

|𝐹 ′ = 11/2⟩ (−46.4 MHz)

42S1/2

|𝐹 = 7/2⟩ (714.3 MHz)

|𝐹 = 9/2⟩ (−571.5 MHz)

𝜔0′3′ ≃ 16.9 𝛤K

𝜔12 = 2𝜋 · 1285.8 MHz

42P1/2

|𝐹 ′ = 2⟩ (86.3 MHz)

|𝐹 ′ = 1⟩ (−69.0 MHz)

41K

42P3/2

(236.2 MHz)

(235.5 MHz)

|𝐹 ′ = 3⟩ (8.4 MHz)

|𝐹 ′ = 2⟩ (−5 MHz)
|𝐹 ′ = 1⟩ (−8.4 MHz)
|𝐹 ′ = 0⟩ (−8.4 MHz)

42S1/2

|𝐹 = 2⟩ (95.3 MHz)

|𝐹 = 1⟩ (−158.8 MHz)

𝜔0′3′ ≃ 2.8 𝛤K

𝜔12 = 2𝜋 · 254.0 MHz

42P1/2

|𝐹 ′ = 2⟩ (11.4 MHz)

|𝐹 ′ = 1⟩ (−19.1 MHz)

Figure A.1: Energy diagrams of 39K, 40K, and 41K. Numerical values are taken from [107, 122] and
frequencies are stated in ordinary frequency.



APPENDIX B
39K laser frequencies

Figure B.1 shows all laser detunings used in the experiment.
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Figure B.1: D2 line energy diagram of and the laser frequencies used in the experiment. Numerical
values are taken from [107, 122] and frequencies are stated in ordinary frequency. In this thesis,
numerical values for the overall Raman detuning are stated with respect to the reference laser.
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APPENDIX C
Parameters used for the systematic uncertainty estimation

The parameters for the estimation of bias contributions 𝛥𝜂 and their related uncertainties 𝛿𝜂
performed in Section 5.2 are listed in Table C.1.

Table C.1: Parameters used for the estimation of bias contributions 𝛥𝜂 and their uncertainties 𝛿𝜂.

Ensemble parameters 87Rb 39K
Temperature in µK 27 32
Initial size 1 mm
Differential position 1 mm
Differential velocity 1 mm/s
Interferometer parameters
Free fall time before 1st pulse 𝑡TOF 43 ms
Pulse separation time 𝑇 20 ms
𝜋-pulse width 𝜏𝜋 15 µs
Raman light field parameters
Polarization 𝜎/𝜎

Detuning 𝛥/2𝜋 in GHz 1.6 3.3
Frequency uncertainty 𝛥𝜔𝑖/2𝜋 700 kHz
Total power 𝑃tot in mW 80 200
Intensity ratio 𝐼2/𝐼1 2:1 1:1
Linear power drift 𝑃/𝑃tot 5 × 10−6 s−1

Radius 𝜎𝐿 9.6 mm
Vertical alignment uncertainty 𝛿𝛼 0.03 mrad
Wavefront curvature 𝑅 300 m
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APPENDIX D
Radio frequency antenna

In Table D.1, the dimensions and the simulated gain factor 𝐺 of the Yagi-Uda antenna
(Figure D.1) described in Section 3.1.2 are compared to the half-wave dipole antenna.

Table D.1: Dimensions as labeled in Figure 3.2, and simulated gain factors 𝐺 and impedances 𝑍𝐿 of
the used antennas [110, 111]. All antenna elements are made of copper wire with a diameter of 2 mm.

Half-wave dipole Yagi-Uda antenna
Gain factor 𝐺 1.65 4.94
Impedance 𝑍𝐿 in Ω 93.35 + 𝑖 51.31 41.51 + 𝑖 21.99
Antenna element 𝑙x in mm 𝑑x in mm 𝑙x in mm 𝑑x in mm
Driven element 326.0 - 314.1 97.6
Director - - 290.6 139.8
Reflector - - 318.0 0.0

Figure D.1: Photograph of the Yagi-Uda antenna employed in the experiment.
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