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Do Mixtures of Bosonic and Fermionic Atoms Adiabatically Heat Up in Optical Lattices?
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Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly
correlated systems. In experiments realizing such mixtures in the quantum-degenerate regime the tem-
perature is a key parameter. We investigate the intrinsic heating and cooling effects due to an entropy-
preserving raising of the optical lattice, identify the generic behavior valid for a wide range of parameters,
and discuss it quantitatively for the recent experiments with 3Rb and “°K atoms. In the absence of a
lattice, we treat the bosons in the Hartree-Fock-Bogoliubov-Popov approximation, including the fermions
in a self-consistent mean-field interaction. In the presence of the full three-dimensional lattice, we use a
strong coupling expansion. We find the temperature of the mixture in the lattice to be always higher than
for the pure bosonic case, shedding light onto a key point in the analysis of recent experiments.
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Interacting bosonic and fermionic systems play a key
role in several contexts in physics, quite prominently in the
BCS theory of superconductivity. Systems of dilute atomic
gases (in optical lattices) offer the perspective of simulat-
ing such mixtures or purely bosonic or fermionic systems
under extraordinarily controlled conditions [1,2]. Bose-
Fermi mixtures in optical lattices exhibit a rich physical
behavior, including a wealth of novel phases, charge den-
sity waves, and supersolids [3]. Recent experiments have
succeeded in preparing such mixtures in optical lattices [4],
notably the realization of a stable bosonic 8’Rb and fermi-
onic “°K mixture in three-dimensional optical lattices
[5.6].

To achieve realizations of such strongly correlated sys-
tems in the quantum-degenerate regime, very low tempera-
tures have to be reached. This is not only a difficult
prescription but also, while thermometry methods in the
absence of a lattice are established, it is not entirely clear
how to measure the temperature in its presence. Indeed,
following recent experiments with cold bosonic atoms, an
intriguing and fruitful controversy [7] has arisen concern-
ing the general question relevant to experiments with ultra-
cold atoms in optical lattices: How cold, after all, is the
system in the optical lattice expected to be? For Bose-
Fermi mixtures, this question is even harder to answer as
the additional degrees of freedom leave more room for
different explanations. Interactions between bosons and
fermions result in an effectively reduced repulsion between
bosons, independent of the sign of the Bose-Fermi inter-
action. Hence, one might well expect an increase in coher-
ence as compared to the purely bosonic case. Quite
surprisingly, however, the opposite effect (as measured
via the visibility of the quasimomentum distribution) was
observed [5,6]. The theoretical work Ref. [8], based on
numerical quantum Monte Carlo and density-matrix-renor-
malization-group simulations of one-dimensional systems,
points towards the possibility that this might actually be
due to a finite temperature effect.
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In this work, we discuss the thermodynamics of adia-
batically loading trapped Bose-Fermi mixtures into optical
lattices. During this procedure, the entropy remains con-
stant and leads to intrinsic cooling or heating processes. We
argue that one should expect a significant adiabatic heating
of the mixture, not to be confused with experimental
imperfections such as parametric heating. This is by no
means a marginal effect. This resulting temperature affects
the physics of the strongly correlated system once the
optical lattice is present. We identify the generic behavior
and discuss it on the basis of the values corresponding to
the experiment described in Ref. [6]. More precisely, the
presence of fermions leads either to a more distinct heating
or a less distinct cooling of the mixture. We study in detail
the behavior of these adiabatic heating and cooling ef-
fects—complementing results for purely (non)interacting
bosonic [9-11] and noninteracting fermionic [12] sys-
tems—and analyze and flesh out the specific role of the
fermions in this adiabatic process.

Our results rely on well-established approximations for
the two regimes we set out to connect: (i) For trapped
mixtures of bosonic and fermionic atoms we apply the
Hartree-Fock-Bogoliubov-Popov (HFBP) approximation
along with a mean-field approximation for the interparticle
interaction; (ii) subjecting this mixture to a deep optical
lattice allows us to invoke a strong-coupling expansion for
the Bose-Fermi-Hubbard model. Assuming the raising of
the lattice to be an adiabatic, entropy-preserving process,
then enables us to connect regimes (i) and (ii) without the
need for the approximation schemes to be valid in the
intermediate regime. It is the strength of this type of argu-
ment that generically, the final state is path-independent in
this adiabatic process.

Trapped mixture without optical lattice.—Subsequently,
we will discuss the thermodynamics of the Bose-Fermi
mixture in an isotropic harmonic trap in the absence of
an optical lattice. We will insist on being close to an
experimental situation in our description, and take the
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full three-dimensional situation into account. We start from
the grand-canonical Hamiltonian

0= [ dr<ct>+[;;g + gcm + fxiﬁﬂcb + ximszif)

where we denoted the bosonic (fermionic) field operators
by o (\i’), the interaction amplitudes g, f are related to the
respective scattering lengths as g = 4wh’agg/mg, f =
2mhapg(myg + mp)/(mpmp), the free part of the bosonic
Hamiltonian is given by iz = —h?V2/(2mp) + Vg — up,
Vy = mpwir?/2, and accordingly for /. We thus restrict
ourselves to isotropic traps, taking geometrical averages of
the trapping frequencies in the actual experiment.

For the bosonic sector, we invoke the standard local-
density HFBP approximation, which is a self-consistent
mean-field scheme that has proven applicable to a wide
temperature regime [13,14]. The interspecies interaction is
treated in the self-consistent mean-field approximation
OOV =~ ST DI + (DT DYPTT — (DT DY)
[15], where we define the fermionic density (T = m
and the total bosonic density (&1 ®):=n=ny + ny, com-
posed of the condensate n, and noncondensate density ny.
This yields the following set of coupled equations: (i) The
finite temperature Gross-Pitaevskii equation in the
Thomas-Fermi approximation (which may be safely ap-
plied for the high number of atoms considered), govern-
ing the condensate density, ny=max{0,(uz—Vs—
fm)/g —2ny}, where the chemical potential is fixed by
the given total number of bosons, Nz=N,+ N;=
[drng+ [drng. (i) The thermal density of bosons (kT =
1/B) np= [dp[(u% +u2)(ePe—1)"" +u2]/(27)°, where
the Bogoliubov amplitudes are given by 2u% =
(W*p?/(2mp) + Vy — up + 2gn + fm)/e £ 1, and the
quasiparticle spectrum reads €> = (h>p*/(2mg) + Vy —
wp +2gn + fm)*> — g?n3. Finally, (iii) the fermionic
density in local-density approximation m= [(eP®+
)" 'dp/@2m)3, 6 = W2p*/2mp) + Vi — wp + fn, where
the chemical potential is fixed by the given total number of
fermions Ny = [ mdr.

For given temperature 7 and particle numbers Np, N,
we solve (i)—(iii) self-consistently in the following way:
Starting with no interaction between bosons and fer-
mions and ny = 0, we (a) compute ny and wg by solving
(i) under the particle number restriction, (b) obtain ny
from (ii), (c) iterate (a) and (b) until convergence,
(d) solve (iii), which yields m and wp, (f) iterate (a)—(d)
until convergence.

After convergence, we are equipped with the spectra and
can compute the entropy of the mixture [16], S/kg=
[[sg + spldpdr/(2ar)?, with individual contributions sp =
Be/(ePs—1)—log(1 —e P€), sp=B5/(e? +1)+1og(1+
e B). In Fig. 1, we show the obtained results for the
parameters of the experiments in Ref. [6] for different
ratios Np/Ng. The critical temperature for condensation
is = 205 nK and no thermal cloud was discernible in the
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FIG. 1 (color). Densities @p=na} /Ny (red), @p =
maj /N (green) and entropy densities op/r = sg/raj,/10*
(blue and cyan, scaled by 10* for clarity), o = o + op
(black line), in units of the bosonic harmonic oscillator length
ap,- The shown data sets correspond to the experiment in Ref. [6]
and a temperature of 95 nK. The mixture consists of 103 3’Rb
atoms and no (solid lines), Np = 0.03Np (dashed lines), and
Ng = 0.07Ng (dotted lines) 40 K atoms.

experiment, corresponding to a condensate fraction of at
least 80% and a initial temperature below 95 nK. The
bosonic entropy is highest at the condensate boundary,
where the density of the thermal cloud has its maximum.
In turn, sy is highest in the center of the trap. We can see
that the bosonic contribution to the total entropy remains
basically unaltered by the presence of the fermions, their
main contribution stemming from sy itself.

Trapped mixture in deep optical lattices.—To describe
the system in the presence of the lattice, we use the single-
band Bose-Fermi-Hubbard Hamiltonian [3,17] H=J+
D.ihi, J= _JFZ(i,j)f;‘rfj - JBZ(i,pszbj’ hi=Un;(i; —
1)/2+ Vi, — uBi; — wFim,. Here, the operator b; (f;)
annihilates a boson (fermion) at site i and 7i; = l;:r l;,-, m; =
f ZT f .. J accounts for the tunneling of atoms from one site
to neighboring sites, U, V are the intraspecies, respec-

and MB/F=

tively, interspecies on-site interactions, ;

mp/r— V; are on-site chemical potentials controlling the
particle number via up,r and accounting for the harmonic
confinement V;, which is approximately the same for both
species. For deep lattices the tunneling may be treated as a
perturbation in Jg, . Up to second order and within local-
density approximation (assuming that the trapping po-
tentials are the same at neighboring sites), the free energy
is found to be F = —1log(Z2)/B=—Y,log(z;)/B —

3% (U3b; + J3f)/23. where by =%, n(n' + 1)b}",
fi =32 _gexp[—Blel! + & )exp(BV(n' — n)) —
1/(V(n' — n)),

e,B[U(n’*n*l)JrV(m’*m)] -1

Un'—n—1)+V(im' —m)’

!l
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!
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b =
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and the unperturbed on-site energies and corresponding
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partition functions are given by €' = Un(n—1) — ufn—
wEm+Vam, 2= 2 [exp(—Ber®) + exp(—Bel)].
Starting from the above expression for the free energy,
we calculate the chemical potentials for given particle
numbers by numerically solving Ng/p = —0F /g JF>
where the right-hand side is obtained by numerically dif-
ferentiating the free energy with respect to the chemical
potentials. Similarly, by differentiating with respect to 3,
we then compute the entropy of the mixture in the lattice
[16]: S/ky = B*dF /4.

Discussion.—We are now in the position to assess the
situation when raising the lattice is an adiabatic process.
Figure 2 shows the entropy as a function of temperature in
a system of 10° 8’Rb atoms in a three-dimensional trap. In
this figure, we use the experimental parameters of Ref. [6],
but the findings are valid for a wide range of parameters.
Both the entropy without and in the presence of the optical
lattice is depicted for the purely bosonic case and a small
admixture of fermions. We see that generally, for fixed
lattice depth V,,, below a certain temperature T, the adia-
batic ramp-up gives rise to adiabatic cooling, whereas
above T we find adiabatic heating. Because of the trapping
potential and its dependence on V|, [the trapping frequen-
cies change according to w? — w? + 8V, /(mgw?), i =
X, ¥, Z; see [6]], the entropy is not a monotonic function
of V, for fixed temperature; see Ref. [9] for a discussion of
this effect in noninteracting bosonic systems. Both above
and below the threshold T, the presence of the fermions
results in a higher final temperature as compared to the
same situations with bosons only. This is most dramatic at
initial temperatures for which pure bosons are adiabatically
cooled and in the mixture adiabatic heating occurs: For an
initial temperature of 90 nK and a final lattice depth of
15Ep, the temperature is =40 nK higher in the presence of
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FIG. 2 (color). Entropy as a function of temperature for the
parameters of Ref. [6]. The mixture consists of 10° 3’Rb atoms
and Ny = 0 (solid lines), 0.03Ny (dashed lines), Np = 0.07Np
(dotted lines) “°K atoms in a lattice of various depths (blue,
15ER; red, 30ER; black, no lattice; resulting in different V;; see
main text). The inset shows the same at a larger scale, including
the entropy for the purely bosonic case obtained from analytical
expressions (green) valid below the critical temperature (dashed
line) and at ultralow T (solid line); see[20].

0.07Np fermions, corresponding to an increase of =~67%;
see Fig. 3. This affects the contrast of the interference
pattern [8] analyzed in those experiments. This behavior
is generic, valid, in particular, for both experiments of
Refs. [5,6] as well as for experiments performed in an
isotropic and shallower trap [18], where the initial tem-
perature was always below the threshold: For any initial
temperature, the entropy without the lattice is always much
higher in the presence of fermions, even for a relatively
small admixture of “°K atoms. While below T adiabatic
cooling occurs, this effect is lessened compared to the
purely bosonic case. Above T and in the presence of the
lattice, the entropy including fermions is higher, thus re-
ducing the heating effect. However, this cannot compen-
sate for the high initial difference of entropies; see Fig. 3.

Note that the influence of fermions is most distinguished
in the absence of the lattice. This is plausible when con-
sidering the form of the unperturbed free energy in the
presence of the lattice: €/® = Un(n — 1) — ufn and
e’ = Un(n — 1) — uPn + Vn are different only by an
alteration of a definition of the bosonic chemicals poten-
tials (the total number of bosons is the same with and
without fermions), leading for low temperatures to ap-
proximately the same expression for the entropy. Taking
a closer look at the situation including the lattice, we see
that, at low temperatures, more fermions lead to a lower
entropy —the interspecies attraction reducing the mobility
of the atoms and thus the number of possible microstates.
In turn, at higher temperatures interactions become less
important and the entropy increases with the number of
fermions. While this cannot compensate the initial differ-
ence in entropies, it however reduces the heating effect for
higher initial temperature; see Fig. 3. This effect could be
observed in the currently available experiments: At a fixed
lattice depth the difference between the situation with and
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FIG. 3 (color). Difference ATy, = TEE — TE between the
final temperature in the lattice with and without fermions as a
function of the initial temperature without lattice. Parameters are
as in Fig. 2. For any initial temperature, the presence of the
fermions leads to higher final temperatures as compared to the
purely bosonic case. Solid lines depict the final temperature T2

fin
without fermions (right scale).
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without fermions should first increase, reach a maximum,
and finally decrease with increasing initial temperature.

Summary and outlook.—We have quantitatively ex-
plored the adiabatic cooling and heating effects that are
to be expected in experiments with Bose-Fermi mixtures in
optical lattices, crucial when reaching a strongly correlated
system. On intuitive grounds, one could have suspected
that the features observed in experiments were due to a
shift of the bosonic Mott lobes in the presence of fermions,
their presence effectively altering the local chemical po-
tential. This is indeed the case, but predicts an increase of
coherence [8], the opposite of which was observed in
experiments. We have seen that for parameters of present
experiments, the resulting temperature is much larger than
expected from thermometry without the lattice. Methods to
assess the temperature of samples in optical lattices would
clearly be a breakthrough, promising ideas being, e.g., the
characterization of the shell structure of local densities
[19]. A link to the expected visibility from our analysis is
provided by Ref. [8]. This analysis applies to a one-
dimensional situation, yet for the visibility it is expected
to give a clear guideline: It is seen how the bosonic
visibility decreases with increasing temperature. A clear-
cut quantitative analytical analysis of the quasimomentum
distribution at finite temperature is still lacking and
poses—even for purely bosonic systems—an exciting
challenge and constitutes a test bed for theories developed
in the condensed matter context. It is the hope that the
present work can significantly contribute to the clarifica-
tion of the intriguing discussion on the interpretation of
observed data and on the available theoretical models for
mixtures of bosonic and fermionic atoms in optical lattices.
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The ultralow temperature approximation for the energy
E/(NgkzT®) =57/7+10.6n'/2{/2 [14] used in Ref. [11]
to obtain the entropy is somewhat misleading in its predic-
tions. Comparing it to the local-density HFBP result shows
that for the considered parameter and temperature regime
the expression E/(NgkpT?) = 3¢(4)t*/£(3) + n(1 —
)2/5(5 + 1642)/7 [13] is more apgropriate; see also
Ref. [10]. Here, n={(3)3155(NY app/an)¥3 /2, t =
T/T?, and T? is the critical temperature in the absence of
interactions. In Fig. 2 we depict the entropy obtained from
the above expression (green dashed line) and the one used
in Ref. [11] (green solid line). For the parameters in
Ref. [11] we have also compared both expressions to the
local-density HFBP result (both former expressions are ap-
proximations to the latter) and found the same fundamen-
tal difference. Interestingly, this refined study shows that
instead of the claimed adiabatic heating, cooling should
occur for typical initial temperatures. This is also sub-
stantiated by the observation of the spatial shell structures
in Ref. [19], which would not be visible in the case of
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