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Near-ground-state transport of trapped-ion qubits through a multidimensional array
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We have demonstrated transport of 9Be+ions through a two-dimensional Paul-trap array that incorporates
an X junction, while maintaining the ions near the motional ground state of the confining potential well. We
expand on the first report of the experiment in Blakestad et al. [Phys. Rev. Lett. 102, 153002 (2009)], including a
detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional
excitation during transport are explained, along with the methods used to mitigate such excitation. We reduced
the motional excitation below the results in the above reference by a factor of approximately 50. The effect of
a mu-metal shield on qubit coherence is also reported. Finally, we examined a method for exchanging energy
between multiple motional modes on the few-quanta level, which could be useful for cooling motional modes
without directly accessing the modes with lasers. These results establish how trapped ions can be transported in
a large-scale quantum processor with high fidelity.
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I. INTRODUCTION

The reliable transport of quantum information will enable
operations between any arbitrarily selected qubits in a quantum
processor and is essential to realize efficient, large-scale
quantum information processing (QIP). Trapped ions are a
promising system in which to study QIP [1–3], and several
approaches to achieving reliable information transport have
been proposed [1–8]. In most demonstrated entangling gate
operations that use ions, qubits stored in the internal atomic
states of ions are entangled by coupling the internal states
with a single shared motional mode through a laser-induced
interaction [1–3,9]. However, as the number of ions grows
large (>10), it becomes difficult to isolate a single mode
during gate operations [5,10]. One way around this issue is
to distribute the ions over an array of harmonic potentials,
where the number of ions in each trapping potential can remain
small. The potentials can be adjusted temporally to transport
the ions throughout the array and combine selected ions into a
particular harmonic potential. Once combined, gate operations
can be performed on the selected ions by use of a local shared
mode of motion [5,6].

Initial demonstrations of such distributed architectures have
incorporated simple linear arrays [11–15], where all ions
are confined in potential minima on a line along an axis
of the trap. The order of ions within the linear array can
even be changed [16]. However, multidimensional arrays
[5,6] provide the greatest flexibility in ion-trap processor
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architectures, and permit more efficient reordering of ion
strings for deterministic gate operations. The key technical
element that must be realized toward this end is the two-
dimensional junction, which consists of multiple intersecting
linear arrays. The potentials in a junction are more complicated
than those in a linear array, making transport through a junction
challenging. Since the fidelity of the gates is highest if the
ions are near their motional ground state, it is important that
transport through such arrays be performed reliably and with
minimal excitation of the ion’s motion in its local trapping
potential. If multiple transports are needed, each transport
should contribute well under a single quantum of motional
excitation, though sympathetic cooling can be used to remove
excess motional energy, at the cost of increased experiment
duration (and accompanying decoherence) [6]. For simple
linear arrays, reliable transport with little motional excitation
has been demonstrated [11,12,14].

To date, transport through a T junction [17], an X junction
[18], and surface-electrode Y junctions [19,20] have been
demonstrated. However, such transport has not yet been
demonstrated with sufficiently low motional excitation (at or
below a single quantum). Using the apparatus in Ref. [18],
we have now realized highly reliable transport through an X
junction with excitation of less than one quantum of motion
per transport, a decrease of approximately 50 compared to
the results in Ref. [18]. This has allowed us to observe a
process where energy can be exchanged between motional
modes in certain situations and demonstrates motional control
over the ions at the single-quantum level. The paper is
organized as follows: We begin in Sec. II with a description
of the X-junction trap array used for transport. Section III
lays out the procedure for calculating the time-dependent
trapping potentials that transport the ion. A description of
the basic transport experiment is given in Sec. IV. Section V
covers the various mechanisms that excite the ion’s motion
during transport, as well as the filtering techniques used to
mitigate those excitations. This understanding of the noise
sources, and the subsequent improved filtering techniques,
allowed the reduction in motional excitation relative to
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Ref. [18]. To mitigate the effects of magnetic field fluctuations
on qubit decoherence, a mu-metal shield and field-coil current
stabilization were used, which is explained in Sec. VI. Finally,
in Sec. VII, we discuss a procedure for swapping motional
energy between motional modes at the center of the junction
array. This swapping process can potentially be used to laser
cool multiple modes of motion without the need for a direct
interaction between the cooling laser and every motional mode.

II. X-JUNCTION ARRAY

The X-junction array was based on the design of previous
two-layer linear rf Paul traps [11,12,21]. The current trap
consisted of a stack of five high-purity alumina (99.6% Al2O3)
wafers clamped together (Fig. 1) with screws (visible in Fig. 2).
The trap electrodes resided in the “top” and “bottom” wafers.
These wafers (125 μm thick) were laser machined to cut out
“main channels” through the wafers, with opposite sides of
the channel forming rf and control electrodes. Slits, nominally
perpendicular to the main channel axes, separated the control
electrode side of the channel into a series of cantilevered
structures to produce separate control electrodes. Electrodes
were formed on the Al2O3 by evaporating through a shadow
mask a 30-nm titanium adhesion layer followed by 0.5 μm of
gold, then overcoating with 3 μm of electroplated gold. Care
was taken to coat all sides of each cantilevered structure to
minimize exposed dielectric that could otherwise charge and
shift the potential minima in an uncontrolled way.

A spacer wafer provided a separation of 250 μm between
the two trap electrode layers. These three wafers sat atop a
500-μm-thick “filter board,” upon which in-vacuum RC filter-
ing components were mounted. The “bias wafer” resembled
the top and bottom wafers but with a single continuous control
electrode extending along all sides of the main channels.
The bias wafer sat below the filter board and was used to
compensate stray electric fields along ŷ.

FIG. 1. (Color online) A cross-sectional view (not to scale) of the
five-wafer stack, in the x̂,ŷ plane at the experiment zone (E). Each
wafer had a channel cut through it to define the electrode structure and
to provide a path for laser beams to pass through the wafer stack. The
top and bottom wafers provided the confining potential; the ions were
trapped between these electrodes as indicated. The RC low-pass filters
were surface mounted to the filter board with gold ribbon attached
by use of resistive welds. The bias wafer was a single electrode used
to null stray electric fields along ŷ. Gold was coated on the top side
of the trap wafers and wrapped around to the bottom side, and vice
versa for the bias wafer. Gold wire bonds connected traces on the trap
wafers to traces on the filter board.

FIG. 2. (Color online) Top view of the filter board and trap wafers.
The filter board fills the entire image, while the top wafer is the rotated
square visible on the right of the image. Cap screws, visible in two
corners of the top wafer, held the wafer stack together. Wire bonds
connected the filter board traces to the top and bottom trap wafers.
Surface-mount resistive and capacitive elements on the filter board
provided filtering for the control potentials (see Fig. 10).

Gauge pins were used to help align the wafers during
assembly. A misalignment error of approximately 0.22◦ was
measured between the ẑ axes of the two electrode wafers, and
this error was included in the computer model of the trap used
to determine the appropriate transport potentials.

The electrode layout of the array is depicted in Fig. 3 and
consisted of 46 control electrodes that produced 18 possible
trapping zones. The experiment zone, E , was chosen as the
zone where the ions interacted with lasers for cooling and
qubit operations. In addition to E , zones F , V , and C (at the

(a) (b)

FIG. 3. (Color online) (a) Cross-sectional view of the two layers
of electrodes in the X-junction array. (b) Top view of the electrode
layout, with the rf electrodes indicated, and all other (control)
electrodes held at rf ground. The bottom trap wafer, which sat
below these electrodes, had a nearly identical set of electrodes but
with rf and control electrodes exchanged across the main channel.
Ions were trapped in the main channels between the rf and control
electrodes. Forty-six control electrodes (some of which are numbered
for reference) supported 18 different trapping zones. The load zone
(L), the main experiment zone (E), the vertical zone (V), the
horizontal zone (F), and the center of the junction (C) are labeled.
(c) Schematic of the rf bridges from an oblique angle (not to scale).
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FIG. 4. (Color online) Simulated pseudopotential barriers along
the z axis produced by the rf bridges in the X junction, with 0 being
the junction’s center. Here, we assumed Vrf ≈ 200 V and �rf ≈ 2π ×
83 MHz. The asymmetry between the two barriers was due to a slight
misalignment of the trap wafers.

center of the junction) composed the four destinations of the
transport protocols. The final zone of interest was the load
zone, L, where the ions were initially trapped.

The trap dimensions were similar to those in Refs. [12,21].
The width of the channel between the rf and control electrodes
was 200 μm, except near L, where it increased to 300 μm to
increase the volume of the loading zone and, with it, the loading
probability. Most control electrodes extended 200 μm along
the trap axis, but those nearest to the junction were 100 μm
wide to ensure sufficient control when ions were transported
in this region.

At C, two main channels crossed to form an X junction,
and two rf bridges connected the rf electrodes on opposite
sides of that junction (one on the top trap wafer and one
on the bottom). Without such bridges, the array would not
have provided harmonic three-dimensional confinement at the
center of the junction [22,23]. The widths of the bridges
were 70 μm, though the trapping potential was not strongly
dependent on this dimension.

These bridges introduced four axial pseudopotential barri-
ers, one in each of the entrances to the junction (along ±x̂ and
±ẑ). Figure 4 shows the two simulated pseudopotential barriers
along the ẑ legs in the X-junction array going toward E and F
(the asymmetry was due to the trap misalignment mentioned
above). The height of these barriers was a significant fraction
of the transverse pseudopotential trapping depth and was ap-
proximately 0.3 eV for 9Be+, with rf potential of Vrf ≈ 200 V
(peak amplitude) and frequency �rf ≈ 2π × 83 MHz. At the
apex of the barriers, just outside the center of the junction,
the pseudopotential was anticonfining in the axial direction
but still harmonically confining in the two radial directions.
It was possible to use the control electrodes to overwhelm
this anticonfinement and produce a three-dimensional (3D)
harmonic confining potential at all points along the axis of the
array.

Zone E was positioned far (880 μm) from the junction to
reduce the residual slope of the pseudopotential barrier in this
zone. The amplitude of the axial pseudopotential at E was
estimated, by use of computer models, to be 2.9 × 10−5 eV

FIG. 5. (Color online) A Be oven was positioned out of the plane
of this figure in the positive y direction (above the trap) and could
be heated to produce a flux of neutral Be. This Be would then travel
down onto the trap, with a portion of the flux passing into trap’s
main channel at the load zone. Copropagating photoionization and
Doppler-cooling laser beams intersected the Be in the load zone at 45◦

to the xz plane of the page and parallel to −ŷ + ẑ. An “L”-shaped
oven barrier obscured the line of sight between the oven flux and
the zones used during the transport experiments to prevent neutral Be
from accumulating on the surfaces of the electrodes near the junction.
This barrier was positioned just above the trap electrodes, extending
1.6 cm along ŷ out of the plane of the page. Additional laser access
was available for beams passing through E (at 45◦ to the xz plane)
allowing for cooling, detection, and gate operations at E .

with a 8.7 × 10−8 eV/μm axial gradient, which would give
rise to an axial “micromotion” amplitude of 47 nm at the drive
amplitude specified above.

Ions were loaded into the array from a flux of neutral Be that
passed through L and was photoionized with a mode-locked
laser that after two stages of doubling produced 235 nm
resonant with the s-to-p transition of neutral Be. To help
prevent buildup of neutral Be from the beam in other regions
of the array, L was located sufficiently far from E . In addition,
L was displaced along x from E , by use of two 135◦ bends in
the main channel, to allow an L-shaped stainless-steel shield
to be placed 0.5 mm above the trap wafers, preventing neutral
Be from striking the experiment zone while allowing laser
access, as shown in Fig. 5. Transporting ions through such
135◦ bends is relatively straightforward, and we were able to
easily transport ions between L and E .

Whenever an ion was lost, a new ion was loaded into L and
immediately transferred to E . It was also possible to use zone
L as a reservoir zone, where extra ions were loaded and held
in reserve until needed to replace ions lost in the experiment
region. This allowed the loading process to be performed less
often, which avoided heating the neutral Be oven and the
concomitant degradation of the vacuum. Potentially, many ions
could be simultaneously stored in such a zone, though we only
stored a small number and did not regularly make use of this
feature of the trap. By enabling a better vacuum, a reservoir
can significantly increase ion lifetime. In this scenario, it is
desirable to maintain Doppler cooling in L to extend the ion
lifetime.

III. TRANSPORT POTENTIALS

The first demonstrations of ion transport in a multizone
trap involved moving an ion along a linear array [11]. A
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protocol where two ions were placed in a single trapping well
and separated into two wells or combined from two wells
into a single well was also demonstrated [11,12]. Since then,
transport through linear arrays has been extended to other
contexts [13,15,16], including transport through a junction
[17–20] and switching of ion order [16,17].

Here we outline the process used to calculate the time series
of control potentials, or “wave forms,” used to transport ions
through the X junction. This same basic procedure would
be generally applicable to many ion-transport situations. The
goal was to move ions quickly, over long distances, while
maintaining low excitation of the ion’s secular motion in its
local potential and traversing nontrivial potential landscapes
such as those near junctions. Ideally, the ion should move
along the axial direction of the array while remaining at the
transverse pseudopotential minimum. The control electrodes
were used to create an overall harmonic trapping well
whose minimum moved along this desired trajectory. The
procedure for determining wave forms can be broken down
into four steps: modeling the trap, determining the constraints,
solving for the appropriate potentials, and assigning the time
dependence of potentials.

An electrostatic model of the trap was constructed by use of
boundary element method (BEM) software [24,25]. For each
of N electrodes, the model was run once, applying 1 V to the
nth given electrode while grounding all other electrodes. The
potential resulting from each of these voltage configurations,
φ̃n(r), was extracted (in the form of a 5-μm grid) in the region
through which the ion would pass. These individual electrode
potentials could then be weighted by the actual voltage applied
to the electrode, Vn, and summed to find the total potential:

�(r) = φps(r) +
N∑

n=1

Vnφ̃n(r). (1)

Here we have included the contribution of the rf pseudopo-
tential φps. The pseudopotential was found by first modeling
the rf potential φ̃rf as if it were a static potential at 1 V. Then
an additional step was used to convert the rf potential into a
time-independent pseudopotential by use of

φps(r) = q

4m�2
rf

(Vrf∇φ̃rf(r))2, (2)

where Vrf was the peak voltage applied to the rf electrode,
and q and m are the charge and mass of 9Be+, respectively.
[Throughout this section, all φ potentials (including φps) are
reported as electric potentials (in units of V) and not energy
potentials (units of eV); these are related by a factor of q.]

The wave form was built up from a string of individual
solutions, where each solution satisfied a set of constraints on
the trapping potential centered at a certain position. These
constraints are defined below, but relate to defining the
secular frequencies and orientation of the principal axes of
the potential. By advancing that position by 5 μm along the
intended ion trajectory for each subsequent solution, the series
of potential steps was created that moved the potential well
along the sequence of positions. In theory, the constraints can
be set to completely define a harmonic potential localized at
the desired position, while also constraining the three secular
frequencies and the orientation of the principal axes. This

would imply nine constraints, which we assume for now,
though below we relax some of these constraints when solving
for the experiment wave forms.

To produce a trapping potential, �(r), with a minimum at
r0 = (x0,y0,z0), we enforce

∇�(r0)
.= 0, (3)

where
.= is used to mean “constrained to be true.”

The Hessian matrix,

H(r0) ≡ q

⎡
⎢⎣

∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

⎤
⎥⎦�(r0), (4)

can be used to extract the remaining six parameters of the
harmonic potential: The eigenvalues λi of H(r0) are related
to the secular frequencies, λi = mω2

i and the eigenvectors
point along the principal axes. By completely constraining the
Hessian, we constrain these quantities. Note that the Hessian
is symmetric (H = HT) and has only six independent entries.

It is most convenient to evaluate the Hessian in the frame of
the desired principal axes (x ′,y ′,z′), in which case the Hessian
constraint equation simplifies to

H(r0)
.= m

⎡
⎣ω2

x ′ 0 0
0 ω2

y ′ 0
0 0 ω2

z′

⎤
⎦ , (5)

where diagonal entries constrain the desired secular frequen-
cies (ωx ′ ,ωy ′ ,ωz′ ), and the off-diagonal entries constrain the
principal axes to point along (x ′,y ′,z′). If the Hessian is
evaluated in a different basis, the right-hand side of Eq. (5)
will not be diagonal, and the frequency and axis constraints are
mixed. Nonetheless, an appropriate choice for the right-hand
side can still be made in that case [26]. From here on, we
assume (x,y,z) = (x ′,y ′,z′).

In the interest of compact nomenclature, it is convenient to
define several column vectors:

V ≡ [ 1 V1 V2 · · · VN ]T (6)

and

	(r) ≡ [ φps(r) φ̃1(r) φ̃2(r) · · · φ̃N (r) ]T, (7)

where AT denotes the transpose of A and �(r0) = 	T(r0)V.
Finally, we define the 12-component operator

P ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x
∂
∂y
∂
∂z
∂2

∂x2

∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2

∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)
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where the first three components are the gradient and the next
nine components are the Hessian operator.

The nine position, frequency, and axis constraints defined
by Eqs. (3) and (5) can be assembled into one equation:

C1[P ⊗ 	T(r0)]V .= C2, (9)

where C1 is a j × 12 matrix and C2 is a j × 1 column vector,
where j = 9 for this example.

The position constraints in Eq. (3) can be reconstructed
by using C1 to pick out the three gradient components of P
and C2 to set them to zero. The constraints in Eq. (5) can be
treated in a similar manner. Thus, to encode the nine desired
constraints, we use

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

and

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

(m/q)ω2
x

(m/q)ω2
y

(m/q)ω2
z

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Additional white space has been inserted in both equations
to aid the reader by separating the position, frequency, and
principal axis constraints into groups in the vertical direction,
as well as separating the gradient and Hessian components of
Eq. (10) in the horizontal direction.

Once C1 and C2 are determined, Eq. (9) can be solved
for V by inverting C1[P ⊗ 	T(r0)], thus determining the
control voltages that create the desired trapping potential. This
inversion may not be strictly possible, as is the case when the
number of constraints does not equal the number of control
potentials, leading to an over- or underdetermined problem.
Also, we are interested only in solutions where the magnitudes
of all control voltages are smaller than a maximal voltage Vmax

(for our apparatus, Vmax = 10 V). To achieve this, we use a
constrained least-squares optimization algorithm, as described
in Ref. [27], to calculate

min
|Vi |�Vmax

∣∣C1[P ⊗ 	T(r0)]V − C2

∣∣2
. (12)

In cases where Eq. (9) is overconstrained, this method yields
a “best-fit” V. When Eq. (9) is underconstrained, as is usually
the case for large trap arrays with many electrodes, it returns
a null space in addition to V, which can be added to V to find
multiple independent solutions.

Nine constraints were used above, but many are unnec-
essary. For QIP in a linear trap array, constraining the axial
mode frequency and orientation is often sufficient. Parameters
for the other two modes are less important and often achieve
reasonable values without being constrained, in which case
they can be omitted from the constraint matrices.

In addition to explicitly defined user constraints, there
are implicit physical and geometric constraints that must be
considered. As an example, take the three secular frequencies
of the ion, ωx , ωy , and ωz. These frequencies result from a
hybrid potential that includes both pseudopotential and control
potentials. The contributions from both potentials can be sep-
arated mathematically into components, ωrf,i and ω̃i , respec-
tively, which add in quadrature to give the overall frequency:
ω2

i = ω̃i
2 + ω2

rf,i . (An imaginary frequency component would
imply antitrapping, while a real component yields trapping.)
The control electrodes produce a quasistatic electric field,
which Laplace’s equation requires to be divergenceless. This
places a physical constraint on the frequency’s components due
to the control potential, namely

∑3
i=1 ω̃2

i = 0. Thus, Laplace’s
equation permits only certain combinations of the secular
frequencies. For a linear Paul trap, where ωrf,z = 0, the secular
frequencies must obey

ω2
x + ω2

y + ω2
z = 2ω2

rf, (13)

where ωrf is the pseudopotential radial trapping frequency.
The trap geometry can place constraints on the trapping

potentials as well. For example, in traps where the geometry
contains some symmetry, the potentials must preserve that
symmetry. Care must be exercised to ensure that user-defined
constraints do not contradict physical or geometry constraints,
as this will invalidate the solution.

Though we invoke only position, frequency, and orientation
constraints here, other varieties of user-defined constraints can
be easily included with this framework, and a more complete
discussion of these constraints is presented in [26]. The
constraints used to construct the wave forms in the X-junction
array were as follows.

(1) The position of the potential minimum was constrained
in three directions to be at r0.

(2) One of the principal axes was constrained to lie along the
trap axis (which involves two constraints on axes orientation).

(3) The ion axial frequency was constrained (usually to
3.6 MHz).

(4) The voltages were constrained to be between ±10 V
(to conform to the limits of the voltage supplies used in the
experiment).

This relatively sparse set of constraints tended to give good
solutions at most locations considered. Item (4) is an inequality
constraint that is easily implemented by use of the constrained
least-squares method.

When solving wave forms that transport across multiple
zones, V can become discontinuous from step to step, espe-
cially when transitioning between sets of control electrodes.
These jumps occur when an underconstrained problem (with
null space rank >0) has multiple linearly independent solutions
and the algorithm returns a different solution from one step to
the next: During transport there will be some position at which
it is suddenly easier to produce the desired potential using a
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new combination of electrodes. In principle, such jumps should
not have adverse effects on the potential at the ion, as the
potentials on both side of the jump fulfill the same constraints
and should transition smoothly. However, since the potentials
on the electrodes are filtered, we would expect the potential at
the ion to experience a transitory jump during the transition.

These solution jumps can be handled by various means.
We used the constrained least-squares method to seed each
new solution with the solution of the previous step while
introducing a cost for deviating from the previous solution
by replacing Eq. (12) with

min
|Vi |�Vmax, |Vi−Vi,last|�α

∣∣C1[P ⊗ 	T(r0)]V − C2

∣∣2
, (14)

for a positive constant α. This removes the need for iteratively
choosing weights to keep the voltages within bounds, as
suggested in Ref. [25]. This forced the jump transition to
be extended over multiple steps, rather than allowing a
discontinuous jump. Another approach is to average the two
V’s on each side of the discontinuity, taking advantage of the
linearity of the equations, to produce an intermediate solution
that still satisfies the constraints [28]. Performing several steps
of such averaging will smooth the jump. Alternately, trial and
error can often be used to determine a set of constraints that
does not produce a jump, but this can require significant effort.

A. Transport timing

If the spatial interval between steps in the wave form is
small enough, the potential, once applied to the electrodes,
will move smoothly from step to step [26]. The velocity of
the potential well (and, thus, the ion) is controlled by the rate
at which the wave-form steps are updated on the electrodes.
In our case, the control potentials were supplied by digital-
to-analog converters (DACs) that had a constant update rate
RDAC = 480 kHz and the number of update steps was adjusted
to change the velocity.

Different velocity profiles have been considered for min-
imizing excitation while transporting [29,30]. In this report,
the ions were usually transported by use of a constant velocity
with equally spaced wave-form steps. This could potentially
lead to the ion being “kicked” as the velocity jumps at the
beginning and end of the transport, resulting in motional
excitation. However, these velocity jumps were smoothed by
low-pass filters placed on the control potentials (see Sec. V B).
A smoother “sinusoidal” velocity profile was also tested but
was abandoned after observing no discernible difference in the
amount of motional excitation by use of the different profiles.
This suggests that both transport protocols were well within
the adiabatic regime at the speeds used.

Low-pass filtering (160 kHz corner in our case) can also
potentially distort the wave forms when transporting quickly,
placing an upper limit on the ion speed. However, the practical
speed limit was set by the combination of the maximum update
rate of the DACs and the number of update points required
to accurately produce a continuous harmonic potential in
the region of the pseudopotential barrier. This limit was
experimentally determined for each wave form by adjusting the
number of update points until minimum motional excitation
was achieved. If faster DACs are available and distortion of the

FIG. 6. (Color online) (a) The wave form (as a function of position
rather than time) used when transporting an ion from the experiment
zone, located at z = −880 μm, to the center of the junction at z =
0 μm. We plot voltage versus the z position of the minimum of the
trapping potential during the transport. The locations of the electrodes
near the junction are depicted, along with their electrode number, by
the rectangles in the bottom of the figure. The region from −100 to
0 μm is inside of the junction. The voltage traces are numbered to
show which electrode they correspond to. Electrodes 8 and 9 remain
near 0 V and are omitted for clarity. In addition, the potentials applied
to the control electrodes on the bottom wafer are not displayed, as
they are nearly identical to those applied on the top wafer. (b) A
schematic of the trap, showing the range over which this wave form
transported.

wave forms due to low-pass filtering is of concern, the wave
form can be precompensated to account for these distortions
and produce the desired wave form at the ion.

The wave forms used to transport from E to C are displayed
in Fig. 6 as a function of the position of the minimum of the
trapping potential (the ion’s location). The potentials applied
to the lower trap-wafer control electrodes (on opposite sides
of the main channel) were nearly identical and are omitted for
clarity. These wave forms could be run left to right to transport
an ion 880 μm from E to C, or they could be run in reverse. The
wave forms that transported ions into the other two branches
of the junction (to F and V) were similar to this wave form
due to the approximate symmetry of the trap.

In a typical transport, the potential minimum was moved at
a constant velocity, and there was a direct linear relationship
between the location of the minimum [horizontal axis of
Fig. 6(a)] and the time elapsed since the beginning of the
transport. The typical transport duration for the wave forms in
Fig. 6(a) was approximately 165 μs, with 50 μs to cross the
pseudopotential barrier.

Some control potentials reached the ±10 V limit placed by
use of the constrained least-squares method while traversing
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FIG. 7. (Color online) Predicted secular frequencies as a function
of position corresponding to the wave form in Fig. 6. The axial
frequency along ẑ was constrained to be 3.6 MHz during the majority
of the transport, while the radial frequencies were unconstrained.
As the ion ascended the pseudopotential barrier, the axial frequency
linearly ramped up to 4.2 MHz. Beyond the apex of the barrier,
a second linear ramp was applied to bring the frequency up to
5.7 MHz. As the ion approached the center of the junction, the x

and z frequencies became nearly degenerate.

the pseudopotential barrier near the junction. Other control
potentials had sharp and abrupt changes, which resulted from
the constraint in Eq. (14) that prevented “solution jumping”
by defining how much a given wave-form step can deviate
from the previous step. Instead of jumping, the voltages
ramped linearly over several steps. Although these individual
potentials were not smooth in time, they were continuous,
which was sufficient to ensure that the overall potential
experienced by the ion evolved smoothly.

The axial frequency was chosen to be 3.6 MHz and was
held constant during much of the transport starting at E and
moving toward C (Fig. 7). The frequency was (adiabatically)
linearly ramped to 4.2 MHz as the ion approached the apex of
the pseudopotential barrier, making the ion less susceptible to
rf-noise heating of the secular motion (see Sec. V A). The value
4.2 MHz was the maximum axial frequency attainable at the
apex due to the strong anticonfinement of the pseudopotential
at that location and the ±10 V limit of the DACs providing
the control potentials. The axial frequency then continued to
increase as the ion descended the barrier, reaching a final
value of 5.7 MHz at C. At this location, all control potentials
were 0 V and the pseudopotential provided all the trapping,
resulting in near-degenerate 5.7-MHz confinement along the x̂

and ẑ directions, while the ŷ secular frequency was 11.3 MHz.
When transporting multiple ions in the same potential well, it
would be preferable to break the frequency degeneracy at C to
ensure well-defined axes for the ions. In practice, the motional
excitation rates when moving pairs of ions were still relatively
low despite the near degeneracy at C (see Table II).

IV. TRANSPORT EXPERIMENTS

The transport experiments were performed with 9Be+ions
inside a vacuum system with a pressure of p〈5 × 10−11 Torr
= 7 × 10−9 Pa. A 1.3 × 10−3 T magnetic field was applied to
split the Zeeman states, and the ions were optically pumped
to the 2S1/2 |F = 2,mF = −2〉 state (henceforth, |2, − 2〉).

Manipulation of the 9Be+-ion motional and internal states used
the techniques of Refs. [5,31]. Two-photon stimulated-Raman
transitions enabled coherent transitions between the qubit
states |2, − 2〉 and |1, − 1〉 at frequency ω0 ≈ 2π × 1.28 GHz.
In addition, by tuning the difference frequency of the Raman
beams to ω0 ± ωz, it was possible to drive a blue(red)-sideband
transition: |2, − 2〉 |n〉 ↔ |1, − 1〉 |n ± 1〉. Here |n〉 is a Fock
state of a selected motional mode. Ground-state cooling was
performed by use of a series of red-sideband pulses, followed
by repeated optical pumping to |2, − 2〉. State detection
was performed using state-dependent resonance fluorescence,
where predominantly the |2, − 2〉 state fluoresces.

Each transport began by cooling an ion (or ion pair) in E to
the motional ground state. The ion was then transported into
or through the junction and returned to E . Three transports
patterns were used: E-C-E moved to C and back, while E-C-
F-C-E and E-C-V-C-E moved to F and V , respectively, before
returning to E . The E-C-E transport moved the ion 1.76 mm,
while E-C-F-C-E and E-C-V-C-E moved the ion 3.52 and
2.84 mm, respectively. Once the ion returned to E , the motional
excitation was determined by measuring the asymmetry in red-
and blue-sideband Raman transitions [31,32].

To determine the single-ion transport success rate for E-
C-F-C-E transports, two sets of 10 000 consecutive transport
experiments were performed [18], but with the imaging system
focused on E in the first set and on F in the second. The first
set verified that the ion successfully returned to E every time.
The second set verified that the ion always reached F at the
intended time. Together, these sets of experiments imply the
success rate for going toF and returning to E exceeded 0.9999.
The procedure was repeated for E-C-V-C-E , with the same
result. The E-C-E transport cannot be verified in the same
manner because the bridges obscure the ion at C, but since
the ion must transport through this location to reach F and V ,
the reliability should be no worse.

Ion lifetime, and thus transport success probability, was
ultimately limited by ion loss resulting from background-gas
collisions [5]. With this in mind, the ion loss rate during
transport was not larger than that for a stationary ion (∼0.5/h).
Having observed millions of successive round trips for all three
types of transport, combining all losses implies a transport
success probability of greater than 0.999 995.1 Since transport
comprised a small fraction of the total experiment duration,
many of these losses likely occurred when the ion was
not being transported. In one instance, more than 1 500 000
consecutive E-C-E transports were performed with a single
ion.

Loss rates for transported ion pairs were again comparable
to stationary pairs (∼2 per hour). Absolute pair loss rates were
higher than those for single ions, presumably due to multi-ion
effects [5,33].

1For the 0.999 995 success probability figure, we only verified that
each transport successfully returned the ion to E , not whether the ion
successfully moved the ion through the junction. Given the low rates
of motional excitation, and the fact that we did verify that the ions
move through the junction using 10 000 experiments, it is reasonable
to assume the ion did travel through the junction if the ion successfully
returned to E .
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V. EXCITATION OF THE SECULAR MOTION

Excitation of the ion’s motion during transport was at-
tributed to two main mechanisms: one due to rf noise near
�rf and the other due to excitation from the DACs.

A. rf-noise heating

Consider a trapping rf electric field with an additional
sideband term,

Erf (r,t) = E0(r)[cos �rf t + ξN cos (�rf ± ωz)t], (15)

where ξN  1, and �rf ± ωz is at one of the two axial motional
sidebands of the ion. In [18], it was shown that the two terms
will beat at ωz to produce a force that can excite the ion’s
motion. If the second term is not coherent, but instead is broad-
spectrum noise, this will lead to excitation of the axial motion
at a rate of

˙̄nz = q4

16m3�4
rfh̄ωz

[
∂

∂z
E2

0(z)

]2

×
(

SVN (�rf + ωz)

V 2
rf

+ SVN (�rf − ωz)

V 2
rf

)
, (16)

where SVN (�rf ± ωz) is the voltage-noise spectral density at
either the upper or lower rf sideband, and Vrf is the amplitude
of the trapping rf potential being applied to the rf electrodes.
E0(z) is the axial rf electric field amplitude at the location of
the ion. This heating mechanism is proportional to the slope
of the pseudopotential and is significant only in places with
a large slope, such as the pseudopotential barriers near the
junction (but not in, for example, E).

FIG. 8. (Color online) The ratio of heating rate ˙̄nz to voltage noise
spectral density SVN (�rf − ωz) for various locations along the trap axis
(C is located at 0 μm). This figure is reproduced from Ref. [18]. The
theoretical prediction used a pseudopotential modeled from electrode
geometry and is shown both with and without a scaling parameter
(=1.4). The simulated pseudopotential is overlaid in the background
in units of eV. Since heating was gradient dependent, we saw very little
heating at the peak of the pseudopotential barrier, even though this was
the point of maximum (axial) rf electric field and therefore maximum
axial rf micromotion. Nearly identical pseudopotential barriers were
present on the other three legs of the junction.

This heating mechanism was verified in Ref. [18] by
measuring the heating rate at various locations along the
pseudopotential barrier between E and C, while spectrally
dense white noise (centered on the lower sideband, �rf − ωz)
was injected onto the trap rf drive. Figure 8 plots the ratio of
measured heating rate to estimated injected SVN and theoretical
values of this ratio according to Eq. (16) based on simulations
of trap potentials, for the ion held at several positions between
E and C. A plot with the theoretical values multiplied by a
scaling factor (=1.4) is also included. The deviation of the
scaling factor from 1 is not unreasonable due to the difficulty
of accurately measuring a variety of experimental parameters.

The motional excitation for full junction transports to C
was observed to decrease as the ion speed was increased,
which minimized the exposure to the rf noise while on a
pseudopotential slope. This continued up to a maximum speed
limit, due to the slow DACs, above which the other excitation
mechanism (below) began to dominate. At the optimum speed,
the ion spent only approximately 50 μs on each barrier (above
10% of the barrier height).

Another approach to mitigate rf noise is to suppress the
sideband noise with better filtering of the applied rf trapping
potential. In Ref. [18], the large rf potential (Vrf ≈ 200 Vpeak

at �rf ≈ 2π × 83 MHz) was provided by a series of tank
resonators, which suppressed noise at the motional sidebands
(±3.6 MHz). The primary resonator was a quarter-wave step-
up resonator [34] with a loaded Q = 42 and corresponding
bandwidth [full width at half maximum (FWHM)] of 2 MHz.
This resonator extended into the vacuum, with the trap attached
to the voltage antinode. A second half-wave resonator with
Q = 145 was attached, in series, to the input of the primary
resonator, with a 3-dB attenuator in between to decouple the
two resonators. The resonant frequencies of the two resonators
were tuned to be equal. This network resulted in an estimated
ambient SVN (�rf ± ωz) of −177 dBc at the ion. In the work
reported here, the second resonator was replaced with a pair
of half-wave tank resonating cavities. This filter pair provided
more than 38 dB suppression at frequencies �rf ± 2π ×
3.6 MHz (when not coupled to the primary resonator), an
additional suppression of approximately 10 dB over the
half-wave filter used in Ref. [18]. SVN at the ion was not
remeasured with this new filter pair, but observed reductions
in excitation during transport were consistent with a 10-dB
drop in rf noise.

B. DAC update noise

Another primary source of motional excitation was at-
tributed to the 16-bit, ±10-V DACs that supplied the wave-
form potentials to the electrodes. The DAC voltages were
updated at a constant rate RDAC (�500 kHz), resulting in
Fourier components that could excite the ion’s motion if
2π × RDAC = ωz/J for any integer J .

This effect was observed by first preparing the ion in the
motional ground state at E and then transporting toward C.
Instead of proceeding all the way to C, the transport was
stopped (at z = −300 μm) before the axial frequency began
to ramp up. Thus, the local potential-well frequency remained
approximately constant at ωz = 2π × 3.6 MHz. The ion was
then returned to E . A red-sideband Raman π pulse for n = 0 to
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FIG. 9. (Color online) Plot showing the the number of fluores-
cence photons detected in a duration of 200 μs following round-trip
transport and a subsequent red-sideband pulse, for various DAC
update rates RDAC. Before transport, the ion was prepared in the
motional ground state and then transported through a specific wave
form, where ωz = 2π × 3.6 MHz was maintained during the entire
transport. If the ion remained in the ground state after transport,
the ion fluorescence was at its maximum value (approximately eight
photon counts detected), but when the ion became motionally excited,
the fluorescence dropped. As can be seen, the motion was excited at
specific update frequencies that correspond to RDAC = ωz/(2πJ ) for
J = 8 to 14 (marked by the vertical lines).

n = 1 excitation was applied to determine if the ion remained
in the ground state [31,32]. If the ion was excited out of the
ground state during transport, the Raman pulse had a certain
probability to transfer the ion into the |1, − 1〉 state, which
did not fluoresce during detection. If the ion remained in
the ground state, this side-band pulse had no effect and the
ion remained in the bright |2, − 2〉 state. Thus, fluorescence
detection after the side-band pulse could distinguish an excited
ion from a nonexcited ion.

This experiment was performed for various values of
RDAC, and the results are shown in Fig. 9. It was difficult
to extract the ion’s exact motional state after the transport,
but the correlations between the ion’s motional excitation
and ωz corresponding to a harmonic of RDAC were evident.
The energy gain exhibited a resonance at several values for
RDAC = ωz/(2πJ ) with J = 8 to 14. When the number of
update steps was increased, while the update rate was held
constant (which resulted in an increased transport duration),
the bandwidth of these resonances decreased, as expected from
a coherent excitation.

Use of an update rate that was incommensurate with
the motional frequency [RDAC �= ωz/(2πJ )] minimized this
energy gain. However, increasing the transport speed (using
the same update rate) required a reduction in the number of
wave-form steps, which caused the resonances to broaden.
Minimizing the rf-noise heating required fast transport, so at
the speed that gave the lowest rf-noise excitation rates, the DAC
heating resonances were so broad that they overlapped, and
there was no achievable RDAC that would not result in energy
gain. The DAC heating effect was further compounded by the
fact that the axial frequency was not constant during a full
junction transport, making it impossible to achieve RDAC �=

FIG. 10. (Color online) The control voltages were provided by
40 independent DACs (only one shown here). The DAC output was
filtered prior to being applied to the trap electrodes, through a two-
stage filter seen in (a). The control potentials were referenced to
the grounded vacuum system, which served as the rf ground as well.
(b) After DAC-update noise was observed to excite the secular motion
of the ions, the external filters were replaced by the approximate
third-order “Butterworth” filter shown here.

ωz/(2πJ ) for any constant RDAC. The update frequency
RDAC = 480 kHz appeared to be most favorable and was used
for the results here and in Ref. [18].

Faster DACs capable of RDAC > ωz/2π should signifi-
cantly suppress this motional excitation. Alternatively, aggres-
sive filtering of the DAC output can combat this problem.
The results in Ref. [18] used the RC filter network shown
in Fig. 10(a), which provided suppression by two orders-
of-magnitude over the range of ωz/2π values used during
transport (3.6 to 5.7 MHz), but was not sufficient to completely
suppress the DAC heating. Increasing the RC time constant
would increase the filtering but would also slow down the
rate at which the ion can be transported. Instead, these simple
RC filters were replaced with the approximately third-order
Butterworth filter [35] shown in Fig. 10(b). (The output
impedance of the DAC was <0.1� and contributed minimally
to the filter response.)

A Butterworth filter has a frequency response given by

G(ω) = 1

|Bn(iω/ω0)| = 1√
1 + (ω/ω0)2n

, (17)

where Bn(s) is the nth-order Butterworth polynomial and
ω0 is the corner frequency. If n = 1, the frequency response
reduces to a RC frequency response. In the experiments here,
such higher-order filters provide stronger noise suppression
at ωz while still allowing fast transport. A comparison of
the theoretical response functions for the RC filters used in
Ref. [18] and the Butterworth filters used here is shown in
Fig. 11. The internal vacuum RC components already on
the filter board were taken into account when planning the
Butterworth filter, but the external filter components were
designed to dominate the filter’s response in the frequency
range of concern. Thus, the filter was approximately third-
order, despite the presence of four components (including the
filter board capacitor) with frequency-dependent impedances.
The new filters increased the noise filtering by 22 dB at
3.6 MHz and 26 dB at 5.7 MHz. Furthermore, the electric-field
noise at the ion due to Johnson noise in the resistive elements
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FIG. 11. (Color online) Theoretical transfer function G(ω) versus
frequency for the original RC filter (dashed) and the improved
approximately “Butterworth” filter (solid), where the new filter had a
faster rolloff at high frequency. Since the passband extended farther
for the new filter, the transport speed could be increased while
providing more filtering at the secular frequency (3.6 to 5.7 MHz).
Both traces include the RC components inside the vacuum.

of the new filters was less than that for the previous filters for
all frequencies of interest. For the transport durations used,
these filters did not appreciably distort the wave form.

C. Anomalous noise heating

The “anomalous heating,” which is thought to arise from
noisy electric potentials on the surface of the trap [32], was
measured to be 40 quanta/s for ωz/2π = 3.6 MHz at E and
was not a significant source of excitation during the transport
experiments. For example, we estimate that it should have
contributed only 0.007 quanta for E-C-E transport. To compare
the measurements of various ion traps, it has been common to
express the heating in terms of the electric field noise with the
expression [32]

˙̄nz = q2

4mh̄ωz

SE(ωz), (18)

where SE(ωz) is the spectral density of electric field fluctua-
tions at the secular frequency. From the results here we found
SE(2π × 3.6 MHz) = 2.2 × 10−13 (V/m)2 Hz−1, where the
distance of the ion to the nearest electrode surface was
160 μm. This result, when compared to other traps as in
Refs. [19,36–38], was significantly below that of most other
room-temperature ion traps. The cause of this relatively low
heating rate is not known, but surface preparation could be a
contributing factor.

D. Other heating mechanisms

In the experiments here, the transport was slow and the
trapping potential changed slowly compared to the motional
frequencies, so we did not expect nonadiabatic excitation
of the motion. This was supported by observations that the
excitation did not decrease as the transport was slowed. For
very slow transport, the heating actually increased because
the ion spent more time crossing the rf barriers, resulting
in increased rf-noise heating. Furthermore, no reduction in
heating was observed when a gradual (sinusoidal) velocity

profile was used instead of a constant velocity over the entire
transport.

The wave forms were produced assuming a specific value of
Vrf and corresponding pseudopotential. In theory, if the actual
Vrf does not match the assumed Vrf , the axial trapping potential
will not be as intended at the barriers. In practice, there was an
optimal value for the rf power which resulted in the lowest ex-
citation rates and likely corresponded to the assumed Vrf . The
rf power was prone to slow drifts over many minutes (likely
due to temperature drifts in the resonators) which resulted in
modest increases in motional excitation; it was necessary to
occasionally adjust the rf power (every 10 to 30 min) and hold
it to within <1% to achieve the lowest motional-excitation
rates. In practice, this was performed by ensuring that the
radial secular frequencies at E remained constant.

E. Motional excitation rates

The motional excitation for single-ion transports was
measured by use of sideband asymmetry measurements [31]
after a single pass through the junction, and the results are
summarized in Table I. These results were significantly better
than those in Ref. [18], which are listed for comparison. In
Ref. [18], rf noise was estimated to contribute 0.1 to 0.5
quanta of excitation per pass over a pseudopotential barrier,
which explained between 3% and 30% of the excitation
seen. The remainder of the excitation was attributed primarily
to DAC update noise. The new trap rf filters and control
electrode Butterworth filters produced the observed reduction
in excitation rates.

The transport durations, which were optimized for minimal
excitation, are also given in Table I. The tabulated durations
correspond to the full transport duration including returning
to E (rather than the half-transport reported in Ref. [18]). The
durations also include a 20-μs wait at the half-way point (C,
F , or V , depending on the transport) for the new results and a
30-μs wait for those from Ref. [18].

Moving pairs of ions in the same trapping well would
be useful for both sympathetic cooling and efficient ion

TABLE I. The axial-motion excitation �n̄ for a single 9Be+ ion
for three different transports through the X junction. The results of
this work, as well as that of Ref. [18], are given for comparison.a The
transport duration includes 20 μs for the ion to remain stationary at
the intermediate destination (30 μs for the data from Ref. [18]), before
returning to E . The energy gain per trip is stated in units of quanta
in a 3.6 MHz trapping well where �n̄ = 0.1 quantum corresponds to
1.6 neV.

This work Ref. [18]

Duration Energy gain Duration Energy gain
Transport (μs) (quanta/trip) (μs) (quanta/trip)

E-C-E 350 0.053 ± 0.003 310 3.2 ± 1.8
E-C-F-C-E 910 0.18 ± 0.02 630 7.9 ± 1.5
E-C-V-C-E 950 0.18 ± 0.02 870 14.5 ± 2.0

aThe transport durations given in Ref. [18] were reported in error.
The correct values are 140 μs for transporting from E to C, 300 μs
to go from E to V , and 420 μs to go from E to F . This error did not
affect any other results in Ref. [18].
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TABLE II. The axial-motion excitation �n̄ for a pair of 9Be+ ions
transported in the same trapping well. Values for both axial modes
of motion (c.m. and stretch) are reported. The energy gain per trip is
stated in units of quanta where the c.m. frequency is 3.6 MHz and the
stretch frequency is 6.2 MHz. Results from Ref. [18] are also given,
though only the c.m. mode excitation was investigated.

Energy gain (quanta/trip)

This work This work Ref. [18]
Transport c.m. Stretch c.m.

E-C-E 0.39 ± 0.03 0.13 ± 0.02 5.4 ± 1.2
E-C-F-C-E 0.67 ± 0.05 0.53 ± 0.05 16.6 ± 1.8
E-C-V-C-E 0.72 ± 0.06 0.14 ± 0.02 53.0 ± 1.2

manipulation [6]. This type of transport was demonstrated by
use of pairs of 9Be+ ions and the measured motional excitation
is reported in Table II. Excitation in both the center-of-mass
(c.m.) and stretch modes was measured. Additional heating
mechanisms for multiple ions [5,33] may explain the higher-
energy gain observed for the pair. For E-C-V-C-E transport, the
two-ion crystal must rotate from the ẑ axis to the x̂ axis and
back. For the wave forms used, the potential was nearly the
same in the x̂ and ẑ directions at C. Therefore, the axes were
not well defined throughout the transport, which can lead to an
uncontrolled rotation of axes. It is possible that the discrepancy
in the excitation between E-C-F-C-E and E-C-V-C-E for two
ions may have resulted from this uncontrolled rotation at C.

We expect (and observed) less excitation of the stretch mode
relative to the c.m. mode, for two reasons. First, the stretch
mode frequency was higher than that of the c.m. mode (ωSTR =√

3ωc.m.). Thus, the filters on the rf and control potentials
were more effective at suppressing noise that could excite the
stretch mode. Second, a stretch mode can be excited only by
a differential force on the two ions, while the c.m. mode is
excited by a force common to both ions. Given the proximity
of the ions to each other (a few micrometers) compared to the
distance of the ions to the trap electrodes, the relative amplitude
of differential forces acting on the ions are expected to be less
than common forces.

VI. MITIGATION OF MAGNETIC FIELD FLUCTUATIONS

So far, we have discussed the suppression of undesired
excitation of motional degrees of freedom. We now discuss
how magnetic-field fluctuations affecting internal-state (qubit)
coherence are suppressed in the X-junction trap array.

Decoherence of superpositions of the |2, − 2〉 and |1, − 1〉
qubit basis states occurs both during transport and while the
qubit is stationary. Previous experiments demonstrated that
junction transport contributed negligibly to decoherence [18].
Magnetic-field fluctuations form the dominant contribution
to qubit dephasing, yielding typical values (in this trap
and others) of less than 100 μs [39]. Use of a magnetic-
field-insensitive qubit configuration enables extension of the
coherence time to approximately 10 s and can be used with
some gate operations such as the Mølmer-Sørenson gate [40],
but excludes implementation of σzσz gates [39,41,42].

To suppress the effects of magnetic-field fluctuations, we
enclosed the trap and field coils inside a high-magnetic-

FIG. 12. (Color online) Mu-metal magnetic shield. The main
dome enclosed both the trap and the magnetic-field coils. Cylindrical
tubulation extended along a glass vacuum envelope, which corre-
sponds to the ẑ direction at the trap. Reentrant flanges minimized
field leakage around the imaging and optical access points.

susceptibility mu-metal shield and implemented an active
magnetic field stabilization system. The shield (Fig. 12) was
designed for compatibility with the existing trap vacuum
envelope and optical systems, and for ease of installation
without the need to lift the trap apparatus from the supporting
table. A cylindrical body and approximately hemispherical
dome were selected based on general guidelines for magnetic
shielding and manufacturing constraints. The main body and
baseplate of the shield were constructed of 3.2-mm-thick,
single-layer mu-metal in order to provide maximum shielding
of low-frequency magnetic field fluctuations and to suppress
magnetic saturation of the mu-metal. This latter constraint
arose because part of the field coils defining the quantization
axis of the qubits were located approximately 1 cm from the
walls, where a calculated field of 4 × 10−3 T was expected for
typical operating conditions.

Openings in the shield for optical components or laser
beams were outfitted with a reentrant flange fastened to the
main body of the shield. The flanges extended both outward
and inward in the shield in order to maximize flux-line
redirection. A target length-to-diameter ratio of 5:1 guided
design but was typically not achieved due to geometric
constraints arising from the exterior dimensions of the vacuum
envelope and the desire to position optical elements as close as
possible to the shield for maximum beamline stability. These
flanges were designed to be modular, allowing for redesign
and replacement if increased shielding became necessary.
Magnetic continuity was achieved for all mating flanges by use
of internally threaded fasteners, producing a snug contact fit.

The structure was designed to provide a minimum 22 dB
shielding of low-frequency fields. This was confirmed by
use of a pickup coil and detecting 60-Hz fluctuations. The
minimum suppression measured for the shield alone was
>20 dB parallel to the ẑ axis of the trap, and the direction
of the largest access opening in the shield. Shielding in excess
of 60 dB at 60 Hz was measured in transverse directions.

The 1.3 × 10−3 T quantization field is oriented 45◦ with
respect to the vacuum envelope axis. Initial measurements
identified current instability due to power-supply ripple as
dominating measured decoherence once the shield was in-
stalled. We implemented a custom current-regulation system
based on a proportional-integral-differential feedback circuit,
a series current-sense resistor, and a low-current field-effect
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transistor. To minimize the effect of thermal drifts in the elec-
tronic circuit on magnetic field stability, we selected special
low-TC (thermal coefficient) components and temperature-
stabilized the enclosure. The most critical components were
the gain and sense resistors; these were selected to be low-TC
metal foil resistors with less than 2 ppm/K and less than 3
ppm/K stability, respectively. A four-terminal current-sense
resistor was selected with high-power-handling construction
(0.1 � for the main coil and 0.25 � for the transverse shim
coils). Similar care was taken to select low-TC difference
amplifiers for the input stage and a low-TC voltage reference.
All sense and feedback components were thermally sunk
to an Al enclosure that was thermally stabilized by use of
Peltier coolers and a commercial temperature controller with
millikelvin stability. Stabilization reduced current ripple from
∼1 mA to ∼30 μA on the main field-coil current of 1.2 A. Net
magnetic field fluctuations due to current ripple at the location
of the ions were ∼26 nT.

Measurements of the dephasing time including both the
magnetic shield and the stabilization circuitry demonstrated
extension of the qubit coherence to 1.41 ± 0.09 ms, more
than 15 times longer than that without shielding and current
stabilization, and sufficient for multiple transports before the
qubit dephased. A spin-echo pulse doubles the coherence
time to 2.99 ± 0.04 ms, indicating that slow shot-to-shot field
fluctuations are small, and that decoherence is dominated by
fluctuations on a millisecond time scale.

VII. MODE ENERGY EXCHANGE

The secular modes of the ions were constrained to change
throughout the transports, in both frequency and orientation.
For most parts of the transport, the splittings between the mode
frequencies were sufficiently large and the transport speed was
sufficiently slow that modes changed adiabatically and energy
did not transfer between modes. However, at C, the two princi-
pal axes that lie in the (x,z) plane were designed to have nearly
degenerate secular frequencies (ω′

x ≈ ω′
z ≈ 2π × 5.7 MHz),

which could lead to mode mixing. The third mode along ŷ had
a significantly higher frequency ω′

y = 2π × 11.3 MHz and
would remain decoupled from the x and z modes. Since the
radial modes were only Doppler laser-cooled before transport,
x/z mode mixing would increase the excitation of the axial
mode during transport. We employed two approaches that
would minimize such axial excitation. First, the duration
during which the ion was at C could be adjusted such to
minimize the energy transfer between modes (by using a
duration that corresponded to a full cycle of the mixing
process). Alternately, a potential could be applied to various
electrodes, which we call the shim potential, to sufficiently
break the degeneracy (in practice, |ω′

x − ω′
z| > 2π × 400 kHz

could be achieved) and suppress the mixing. Both methods
were effective and yielded similar transport excitation, though
the second approach was used for the results in Tables I
and II.

However, in separate experiments, we explored a method
for controlling energy transfer between the motional modes
of a single ion by using field shims near the junction to tune
ω′

x and ω′
z to near degeneracy. Ideally, a demonstration of the

method would work as follows. Prior to transport from E , the

ion is cooled to the axial ground state |nz = 0〉 along ẑ and
prepared in Doppler-cooled thermal states in the transverse
modes. If the relative orientation of the modes remains
stationary as the ion approaches C, the modes should not
exchange energy, even if they become degenerate. However,
if the x and z mode directions diabatically (fast compared to
1/�ω) rotate 45◦ to new directions given by x ′ = (x + z)/

√
2

and z′ = (x − z)/
√

2, we would expect the initial x oscillation
to project onto the new mode basis with half of the energy
going into each of the new modes. If �ω′ ≡ ω′

x − ω′
z �= 0, the

two oscillations would then begin acquiring a relative phase
φ = �ω′t , where t is the period spent at C. By then quickly
transporting away from C toward E such that the mode axes
rotate diabatically by −45◦ back to their original orientation,
the oscillations would project back onto the original oscillator
basis. If the wait period is such that φ = πM (where M is an
integer), the motion originally in the x mode would project
back into the same mode. If, however, φ = π

2 (2M − 1), then
the x motion would project into the z mode; that is, the energy
would exchange between x and z modes.

We demonstrated the basic features of this exchange as
follows. To tune the ω′

x and ω′
z close to degeneracy, an external

shim potential with an adjustable amplitude was applied. The
shim potential consisted of various contributions from 17
control electrodes nearC, each multiplied by the overall scaling
factor A. These contributions were selected so that the net shim
potential would primarily alter the frequency splitting without
significantly affecting other trapping parameters (such as the
position of the trapping minimum and the y mode frequency).

The black trace in Fig. 13(a) shows n̄z for the axial mode
after E-C-E transport, as the wait period at C was varied. We

FIG. 13. (a) Average motional excitation (n̄z) in the axial mode
after an E-C-E transport versus the duration at C (wait period).
The black trace indicates exchange of energy between the z mode,
prepared near the ground state (at E), and the x mode, prepared in a
thermal state via Doppler cooling. The smaller blue trace represents
the identical preparation, except the transport was performed twice.
During the first transport, the wait period was set to maximize the
energy transfer from the radial mode to the axial mode, followed
by returning the ion to E . After recooling the axial mode to the
ground state, the round-trip transfer was repeated. The contrast was
decreased (lower trace), indicating that less transverse mode energy
was available for transfer to the z mode and therefore indicating
cooling of the x mode. (b),(c) The exchange contrast and exchange
frequency (respectively), plotted versus the shim-potential scaling
factor A.
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derive n̄z from sideband measurements, as described above,
and assume a thermal distribution. Although this assumption
may not be strictly valid, it should give a reasonable ap-
proximation for n̄z < 1. Oscillations between an excited and
near-ground-state energy are visible. The projection process
began prior to the ion reaching C and transport was too slow
for the projection to be perfectly diabatic. Thus, the phase of
the exchange oscillation in Fig. 13(a) is not well determined
and was observed to depend on both the exchange frequency
and the details of the approach to C (including speed and
trajectory). In practice, it was difficult to maintain a constant
phase for more than a few minutes, as drifts in the potential,
likely caused by transient charge buildup and dissipation on
the electrodes and also pseudopotential amplitude changes,
caused the exchange frequency to drift over that time scale.

Figure 13(b) displays the oscillation contrast �n̄z =
max(n̄z) − min(n̄z) for various scaling factors, A, of the shim
potential, while Fig. 13(c) gives the frequency of those oscil-
lations versus the shim scaling factor. In separate experiments,
the two mode frequencies at C were measured as a function of
A by driving excitations with an oscillatory potential applied
to the control electrodes. The difference between the two
mode frequencies, �ω′ = |ω′

x − ω′
z|, was observed to match

the oscillation frequency of the exchange process. Figure 13(c)
suggests �ω′ is high on the extreme ends of the A range, while
Fig. 13(b) shows a reduction in contrast in these regions of high
�ω′, likely due to the reduction in diabaticity when �ω′ was
large. This conclusion was supported by the observation that
the contrast decreased as the ion transport speed was reduced.
However, there was a maximum speed, above which contrast
no longer increased, because other sources of excitation began
to obscure the oscillatory signal.

From Fig. 13(b), we see that the fringe contrast was also
minimized for shim scaling factors near A = −0.15, where
�ω′ was small. This reduction in contrast can be explained
as coinciding with the condition where the initial mode
orientation is identical to the rotated mode orientation and thus
the modes do not mix when projected, which is a condition
not necessarily related to �ω′. (We note that the A value
for minimum exchange frequency does not match that for
minimum contrast.) Unfortunately, it was not possible to verify
this, as we could not measure the mode orientation at C, due
to lack of laser-beam access.

In the case where the energy from the x mode was
transferred into the z mode, the ion could be returned to E
for a second round of ground-state cooling of the z mode. In
the experiment, the exchange process in C was repeated and
the results are shown as the lower trace in Fig. 13(a), where a
noticeable decrease in the ion’s axial excitation was observed
compared to the first experiment without the second stage of
cooling. The small relative phase shift for the two traces in
Fig. 13(a) was due to the slow drift of �ω′ over the several
minutes required to take the two traces.

Ideally, all of the energy would be transferred from the
x mode into the z mode, and the subsequent cooling of the z

mode would leave both modes in the ground state, leading to no
oscillation during the second trip into C. In practice, complete
transfer was inhibited for two primary reasons. First, the ions
were not being transported fast enough to make a clean diabatic
projection of the motion onto the switched axes. Second, for

complete energy transfer, the projection should be onto axes
rotated by ±45◦. Any other angles would have resulted in
incomplete transfer of energy. Attempts were made to adjust
additional shims in hopes of realizing configurations closer
to ±45◦. However, as �ω′ → 0, it, again, becomes difficult
to predict the mode orientation with our idealized computer
models and we could not experimentally determine the mode
axes in C.

Nevertheless, we observed a clear and easily reproducible
reduction in maximum oscillation amplitude [Fig. 13(a)] from
max(n̄z) = 0.68 ± 0.08 to max(n̄z) = 0.40 ± 0.05 after the
second round of cooling, indicating the radial mode energy
was being reduced. The use of additional rounds of exchange
followed by cooling reduced max(n̄z) further, but after three
or four exchange rounds, other sources of excitation offset the
energy reduction.

When optimized, this technique might be used to cool all
modes of a single ion to the ground state, while having the
ability only to ground-state cool a single mode, as for the laser
beam configuration used here. A junction is not required; all
that is needed is a trap that can diabatically change the relevant
mode orientations by ±45◦, which could be possible in many
trap configurations.

VIII. CONCLUSION

In conclusion, we have demonstrated that transport through
a two-dimensional trap array incorporating a junction can be
highly reliable and excite an ion’s motion by less than one
quantum. This is a significant improvement over prior work
with junction arrays [17,18] and suggests the viability of trap
arrays incorporating junctions for use in large-scale ion-based
QIP. In addition, we have implemented a mu-metal shield and
current stabilization to reduce qubit decoherence. We have
also examined a technique for transferring energy between
motional modes.

DAC-update noise can be mitigated with the use of more
appropriate filters such as the Butterworth filters used here
and/or faster DAC update rates. Noise on the trapping rf
potential can result in motional excitation at pseudopotential
barriers, as described in Sec. V A. The junction design criteria
in Ref. [19] included minimizing these barriers. However, the
results here show that the slope of the pseudopotential barrier
is more important than the barrier height for suppressing mo-
tional excitation, suggesting that suppression of barrier height
may not be a necessary constraint in future designs. Also,
as observed here, with proper rf filtering, significant barrier
slopes can be tolerated without causing significant heating.

The technique for determining the wave forms described in
this report can be extended to incorporate multiple trapping
wells by expanding Eq. (9) to include multiple minima.
Transport procedures such as the ion exchange in Ref. [16]
are also amenable to these solving techniques. Separating
and combining of trapping wells requires consideration of the
potential’s quartic term [43]. Therefore, P in Eq. (8) could be
expanded to include fourth-order derivatives.

With the use of multiple junctions, the techniques described
here could help provide a path toward transfer of information
in a large-scale ion-based quantum processor and enable an
increased number of qubits in quantum algorithm experiments.
To do this, wave forms must be expanded to incorporate
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many trapping wells. Also, it is likely that a sympathetic
cooling ion species will need to be cotrapped with the
qubit ions to allow removal of the motional excitation from
electronic noise, multiple junction transports, and separating
and recombining wells [14,21,44]. If sympathetic-cooling
ions are present, it may be advantageous to transport both
ion species through a junction in a single local trapping
well. Since the pseudopotential (and micromotion) are mass
dependent, the qubit and cooling ions will experience different
potentials, which could lead to additional motional excitation.
If such excitation is excessive, it should still be possible to

separate the ions into individual wells by species and pass
the different species through junctions separately, followed by
recombination.
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