Studies
FortgeschrittenenPraktikum

FORTGESCHRITTENENPRAKTIKUM AM IQO

Das FortgeschrittenenPraktikum (FP)...

... wird von den Hauptfach Studierenden im weiteren Verlauf des Studiums absolviert. Die zahlreichen Praktika, die von den Physikinstituten angeboten werden, stellen oftmals den ersten Kontakt zu den jeweiligen Arbeitsgruppen her.

Die Teilnahme an den entsprechenden Vorlesungen Atom- und Molekülphysik sowie Kohärente Optik ist Voraussetzung für die Teilnahme am Praktikum.

Das FortgeschrittenenPraktikum (FP)...

... wird von den Hauptfach Studierenden im weiteren Verlauf des Studiums absolviert. Die zahlreichen Praktika, die von den Physikinstituten angeboten werden, stellen oftmals den ersten Kontakt zu den jeweiligen Arbeitsgruppen her.

Die Teilnahme an den entsprechenden Vorlesungen Atom- und Molekülphysik sowie Kohärente Optik ist Voraussetzung für die Teilnahme am Praktikum.

Für weitere Informationen klicken Sie bitte auf die blaue Box. Sie werden auf die Seite "Praktikum Physik" weitergeleitet.
FP

ORGANISATION

Madeleine-Yasmin Miltsch
Geschäftszimmer
Prof. Dr.: C. Ospelkaus, A. Heisterkamp, C. Klempt
Address
Welfengarten 1
30167 Hannover
Building
Room
Address
Welfengarten 1
30167 Hannover
Building
Room

LASERSCHUTZ

apl. Prof. Dr. Milutin Kovacev
Professorinnen und Professoren
Sekretariat Stephanie Kaisik

VERSUCHE AM IQO

  • IQ1 He-Ne-Laser

    In diesem Versuch werden Sie lernen, wie man einen Fabry-Perot-Resonator und einen He-Ne-Laser aufbaut und einjustiert. In den einzelnen Versuchsabschnitten werden Sie in diesem Aufbau mit den unterschiedlichen Aspekten optischer Resonatoren vertraut gemacht. Durch Verwendung unterschiedlicher Spiegel können beispielsweise die grundlegenden Resonator-Konfigurationen wie konfokale, planare oder konzentrische Resonatoren realisiert werden. Der Einfluss grundlegender Spiegeleigenschaften wie Krümmungsradius und Transmission auf die ausgekoppelte Leistung und Strahldivergenz soll untersucht werden. Außerdem können unterschiedliche transversale- und longitudinale Moden selektiert und aus dem Laser ausgekoppelt werden.

  • IQ2 Laser Plasma

    In diesem Versuch werden Sie einen gepulsten Laser vollständig charakterisieren und anschließend mit diesem ein Plasma erzeugen. Aus den ermittelten Laserparametern berechnen sie die Intensitäten im Fokus und bestimmen experimentell die Intensitätsschwelle zur Plasmaerzeugung. Diesen Versuch werden Sie mit verschiedenen unbekannten Gasen wiederholen, wozu Sie eine geeignete Vakuumkammer aufbauen. Sie werden das Emissionsspektrum des jeweiligen Plasmas mit einem Spektrometer aufnehmen und dazu benutzen, die unbekannten Gase zu bestimmen. Außerdem werden Sie den Einfluss der Intensität auf das Spektrum untersuchen. Mit diesen Daten können Sie dann auf die Temperatur des Plasmas und den Ionisationsgrad schließen.

  • IQ5 Optische Bauelemente

    Dieser Versuch dient dazu, Sie mit den Methoden und Elementen der Optik vertraut zu machen. Insbesondere sollen Sie einige Grundbausteine optischer Experimentaufbauten, wie sie z.B. in der Atomphysik regelmäßig zu finden sind, kennenlernen.

    Sie werden aus Spiegeln, Linsen, lambda/2-Platten, Strahlteilerwürfeln, Resonatoren und einem elektro-optischen Modulator verschiedene kleinere Versuchsaufbauten planen, aufstellen und einjustieren. Der ausgehende Laserstrahl wird mithilfe von Polarisationsfiltern und Photodioden quantitativ untersucht.

  • IQ6 Jod-Absorptionsspektroskopie

    In diesem Versuch werden Sie ein molekulares Absorptionsspektrum aufnehmen und auswerten. Sie werden zunächst atomare Übergangslinien benutzen, um einen Gittermonochromator zu kalibrieren. Mit diesem werden Sie eine breitbandige Lichtquelle vermessen, um dann eine Jod-Zelle in den Strahlengang zu stellen. Die fehlende Lichtintensität bei bestimmten Wellenlängen gibt Aufschluss über die Vibrationszustände des Moleküls I2. Sie werden das Absorptionsspektrum benutzen, um spektroskopische Molekülparameter zu bestimmen. Außerdem werden Sie den Einfluss der Zellentemperatur auf das Spektrum untersuchen. Hiermit können Sie dann Übergangswahrscheinlichkeiten zwischen verschiedenen Quantenzuständen vergleichen.  

  • IQ7 mode-locked Laser

    In this experiment you will learn theoretically and experimentally about Ultrafast Mode-locked laser. You will first get a fundamental laser concepts and then get familiar with our experiment setup. You are required to be proficient in laser resonator alignment and optimization. And then you will try to make the laser work in Continuous wave (CW) and Pulsed operation. During the work, you can characterize the laser in both CW and Pulsed operation. After that, you need to use this Ultrafast pulsed laser to generate the second harmonic with β-Barium-Borat-crystal (BBO). In the end, you will measure the pulse duration of your Ultrafast laser with autocorrelation method.

  • IQ12 Spektroskopie mit Diodenlasern

    Das Ziel dieses Experimentes ist es die Dopplerbreite von Spektrallinien eines Gases mit der Methode der Sättigungsspektroskopie zu reduzieren. Als Lichtquelle dient eine Laserdiode mit einem externen Resonator, der aus einem Interferenzfilter und einem Katzenauge gebildet wird. Die Frequenz dieses Diodenlasers kann grob durch Änderung des Winkels, welchen die optische Achse mit dem Filter bildet, verstimmt werden. Die Feinabstimmung erfolgt durch Veränderung der Länge des externen Reonators mit einem Piezoelement. Um einen möglichst großen modensprungfreien Durchstimmbereich zu erreichen , wird synchron mit der Resonatorlänge auch der Strom durch die Laserdiode entsprechend verändert.

  • IQ13 Magneto-Optische Falle I

    Fallen für neutrale Atome sind als sehr wichtiges Experimentierfeld in der modernen Atomphysik und Quantenoptik etabliert und auch der Ausgangspunkt für viele quantenphysikalische Experimente. In ihnen können kalte atomare Gaswolken bei tiefsten Temperaturen von wenigen μK über Sekunden bis Minuten gespeichert werden. Dadurch eröffnet sich die Möglichkeit, an nahezu ruhenden Atomen wichtige Fragestellungen der Atomphysik mit höchster Präzision zu untersuchen.

    Es wird ein moderner Versuch bereitgestellt, in dem die Kühlung und Speicherung von Atomen durch Lichtdruckkräfte diskutiert und exemplarisch Messungen mit und an kalten Rubidium-Atomen in einer MOT durchgeführt werden können, wie z.B. eine Temperaturmessung im µK-Bereich.